Exercice 1:1) Sachant que : $\cos\left(\frac{9\pi}{5}\right) = \frac{\sqrt{5}+1}{4}$,

Calculer la valeur de $\sin\left(\frac{9\pi}{5}\right)$.

2) En déduire $\cos\left(\frac{\pi}{5}\right)$ et $\sin\left(\frac{\pi}{5}\right)$

Exercice2: Simplifier les expressions suivantes :

$$C = \cos\left(\frac{5\pi}{6}\right) + \sin\left(\frac{5\pi}{6}\right) - \tan\left(\frac{5\pi}{6}\right)$$

$$D = \sin(11\pi - x) + \cos(5\pi + x) + \cos(14\pi - x)$$

$$F = \cos^2\left(\frac{\pi}{5}\right) + \cos^2\left(\frac{3\pi}{10}\right)$$

$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$$

$$K = \cos^2\left(\frac{\pi}{10}\right) + \cos^2\left(\frac{2\pi}{10}\right) + \cos^2\left(\frac{3\pi}{10}\right) + \cos^2\left(\frac{4\pi}{10}\right)$$

Exercice3: simplifier les expressions suivantes:

$$C = \sin^4 x - \cos^4 x + 2\cos^2 x$$

$$D = \sin^6 x + \cos^6 x + \cos^4 x + \sin^4 x + 5\cos^2 x \sin^2 x$$

Exercice 4: Résoudre dans $]-\pi$; π] l'équation

suivante : $\tan x = \sqrt{3}$

Exercice 5: Résoudre dans \mathbb{R} l'équation suivante $\sin^2 x = 1$

Exercice 6: 1) Résoudre dans \mathbb{R} l'équation:

$$\sin\left(\frac{\pi}{4} - x\right) = \frac{1}{2} \quad (E)$$

2) En déduire dans $\left[-\pi; 2\pi\right]$ les solutions de l'équation (E)

Exercice 7: Résoudre l'équations trigonométrique suivante.

$$\sin\left(2x + \frac{\pi}{4}\right) = -\sin x \text{ dans } \mathbb{R} \text{ puis dans } \left[4\pi; 6\pi\right]$$

Exercice8: Résoudre dans $[0,2\pi]$ l'inéquation

suivante : $\sin x \ge \frac{1}{2}$

Exercice9: Résoudre dans \mathbb{R} l'équation suivantes : $2\sin^2 x - 9\sin x - 5 = 0$ et en déduire les solutions dans $[0; 2\pi]$

http://www.xriadiat.com/ prof: ATMANI NAJIB

DL N•4

PROF: ATMANI NAJIB

TCS

Exercice 1:1) Sachant que : $\cos\left(\frac{9\pi}{5}\right) = \frac{\sqrt{5}+1}{4}$,

Calculer la valeur de $\sin\left(\frac{9\pi}{5}\right)$.

2) En déduire $\cos\left(\frac{\pi}{5}\right)$ et $\sin\left(\frac{\pi}{5}\right)$

Exercice2: Simplifier les expressions suivantes :

$$C = \cos\left(\frac{5\pi}{6}\right) + \sin\left(\frac{5\pi}{6}\right) - \tan\left(\frac{5\pi}{6}\right)$$

$$D = \sin(11\pi - x) + \cos(5\pi + x) + \cos(14\pi - x)$$

$$F = \cos^2\left(\frac{\pi}{5}\right) + \cos^2\left(\frac{3\pi}{10}\right)$$

$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$$

$$K = \cos^2\left(\frac{\pi}{10}\right) + \cos^2\left(\frac{2\pi}{10}\right) + \cos^2\left(\frac{3\pi}{10}\right) + \cos^2\left(\frac{4\pi}{10}\right)$$

Exercice3: simplifier les expressions suivantes:

$$C = \sin^4 x - \cos^4 x + 2\cos^2 x$$

$$D = \sin^6 x + \cos^6 x + \cos^4 x + \sin^4 x + 5\cos^2 x \sin^2 x$$

Exercice 4: Résoudre dans $]-\pi$; π] l'équation

suivante : $\tan x = \sqrt{3}$

Exercice 5: Résoudre dans \mathbb{R} l'équation suivante $\sin^2 x = 1$

Exercice 6: 1) Résoudre dans \mathbb{R} l'équation:

$$\sin\left(\frac{\pi}{4} - x\right) = \frac{1}{2} \quad (E)$$

2) En déduire dans $\left[-\pi; 2\pi\right[$ les solutions de l'équation (E)

Exercice 7: Résoudre l'équations trigonométrique suivante.

$$\sin\left(2x + \frac{\pi}{4}\right) = -\sin x \text{ dans } \mathbb{R} \text{ puis dans } \left[4\pi; 6\pi\right]$$

Exercice8 : Résoudre dans $[0,2\pi[$ l'inéquation

suivante : $\sin x \ge \frac{1}{2}$

Exercice9: Résoudre dans \mathbb{R} l'équation suivantes : $2\sin^2 x - 9\sin x - 5 = 0$ et en déduire les solutions dans $[0; 2\pi]$

http://www.xriadiat.com/