Exercices avec corrections sur L'ordre dans : R

Types d'exercices :

Application directe du cours (*)

Difficulté moyenne (**)

Demande une réflexion (***)

Exercice1 : (*) I) Comparer les réels suivants :

1)
$$\frac{-15}{7}$$
 et $\frac{-15}{4}$ 2) $\frac{-12}{7}$ et $\frac{15}{4}$ 3) $2\sqrt{5}$ et $5\sqrt{2}$

II) Soient a et b deux réels tel que : $a \le b$

Comparer: 1) 5a et 5b2) -13a et -13bIII) Soient a et b deux réels strictement positifs tel que $a \le b$ Comparer :

1)
$$a^2$$
 et b^2

1)
$$a^2$$
 et b^2 2) \sqrt{a} et \sqrt{b} 3) $\frac{1}{a}$ et $\frac{1}{b}$

3)
$$\frac{1}{a}$$
 et $\frac{1}{b}$

IV) Soient a et b deux réels négatifs tel que : $a \le b$; Comparer: a^2 et b^2

Corrigé :I) Comparer a et b revient à étudier le signe de : a - b.

1) On compare
$$\frac{-15}{7}$$
 et $\frac{-15}{4}$:

$$\frac{-15}{7} - \left(-\frac{15}{4}\right) = \frac{-15}{7} + \frac{15}{4} = \frac{-60 + 105}{28} = \frac{45}{28} > 0$$

Donc
$$\frac{-15}{7} > -\frac{15}{4}$$
 ou $\frac{-15}{7} \ge -\frac{15}{4}$

Donc
$$\frac{-15}{7} > -\frac{15}{4}$$
 ou $\frac{-15}{7} \ge -\frac{15}{4}$
2) On compare $\frac{-12}{7}$ et $\frac{15}{4}$:
 $\frac{-12}{7} - \frac{15}{4} = \frac{-48 - 105}{7} = \frac{-165}{28} < 0$

Donc:
$$\frac{-12}{7} < \frac{15}{4}$$
 ou $\frac{-12}{7} \le \frac{15}{4}$

3) On compare $2\sqrt{5}$ et $5\sqrt{2}$:

On a:
$$(2\sqrt{5})^2 = 20 \text{ et} (5\sqrt{2})^2 = 50 \text{ et } 50 - 20 = 30 > 0$$

Et puisque $2\sqrt{5}$ et $5\sqrt{2}$ sont positifs alors: $5\sqrt{2} > 2\sqrt{5}$

II) Soient a et b deux réels tel que : $a \le b$

1) On compare 5a et 5b: on a:

5a-5b=5(a-b) Et puisque $a \le b$ alors $a-b \le 0$

Et on a: 5 > 0 donc: $5a \le 5b$.

2) On compare -13a et -13b:

On a:
$$-13a - (-13b) = -13a + 13b = -13(a - b)$$

Et puisque $a \le b$ alors $a - b \le 0$

Et on a aussi : -13 < 0 donc $-13a \ge -13b$

III) Soient a et b deux réels strictement positifs

Tel que : $a \le b$

1) On compare a^2 et b^2 :

On a: $a^2 - b^2 = (a - b)(a + b)$ et on a : a et b deux réels strictement positifs donc $a+b \ge 0$

Et puisque $a \le b$ alors $a - b \le 0$

Alors: $(a-b)(a+b) \le 0$ D'où $a^2 \le b^2$

2) On compare : \sqrt{a} et \sqrt{b} :

$$\sqrt{a} - \sqrt{b} = \frac{\left(\sqrt{a} - \sqrt{b}\right)\left(\sqrt{a} + \sqrt{b}\right)}{\sqrt{a} + \sqrt{b}} = \frac{\sqrt{a^2} - \sqrt{b^2}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

On a: $a \le b$ alors $a - b \le 0$

Et puisque $\sqrt{a} + \sqrt{b} \ge 0$ car c'est la somme de deux nombres positifs

Donc
$$\frac{a-b}{\sqrt{a}+\sqrt{b}} \le 0$$
 d'où: $\sqrt{a} \le \sqrt{b}$

3) On compare
$$\frac{1}{a}$$
 et $\frac{1}{b}$: on a: $\frac{1}{a} - \frac{1}{b} = \frac{b-a}{ab}$

Et on a : $a \le b$ alors $b - a \ge 0$

Et puisque a et b deux réels strictement positifs alors ab > 0 car c'est la produit de deux nombres positifs

Donc:
$$\frac{b-a}{ab} \ge 0$$
 d'où: $\frac{1}{a} \ge \frac{1}{b}$

IV) Soient a et b deux réels strictement négatifs tel que $a \le b$ On compare : a^2 et b^2 :

On a:
$$a^2 - b^2 = (a-b)(a+b)$$

Et on a : a et b deux réels négatifs donc $a+b \le 0$ Et puisque $a \le b$ alors $a - b \le 0$ par suite :

$$(a-b)(a+b) \ge 0$$
 D'où $a^2 \ge b^2$.

Exercice2: (**) Comparer a et b dans les cas suivants:1) $a = 2 + \sqrt{3}$ et $b = 2\sqrt{3}$

2)
$$a = \sqrt{6}$$
 et $b = \sqrt{3} + \sqrt{2} - 1$

3)
$$a = \sqrt{10}$$
 et $b = \sqrt{5} + \sqrt{2} - 1$

4)
$$a = 10\sqrt{51}$$
 et $b = 70 + \sqrt{2}$

5)
$$a = \frac{1+\sqrt{2}}{2+\sqrt{2}}$$
 et $b = \frac{4+\sqrt{2}}{7}$

6)
$$a = 3\sqrt{18} - \sqrt{72} + 2\sqrt{\frac{9}{2}}$$
 et $b = \sqrt{28} + \sqrt{32} - 2\sqrt{2}$

7)
$$a = \frac{2 - \sqrt{3}}{\sqrt{3} - 1}$$
 et $b = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$

Corrigé:1) $a-b=2-\sqrt{3}$ nombre positif ce qui

signifie que : $a-b \in \mathbb{R}^{*+}$ par suite : a > b

2)
$$a - b = \sqrt{3} \times \sqrt{2} - \sqrt{3} - \sqrt{2} + 1 = \sqrt{3} \times (\sqrt{2} - 1) - (\sqrt{2} - 1)$$

Tronc commun Sciences BIOF

Donc: $a-b = (\sqrt{2}-1)(\sqrt{3}-1)$

On compare : $\sqrt{2}$ et1 : on a $(\sqrt{2})^2 = 2$ et $(1)^2 = 1$

Donc: $\sqrt{2} > 1$ et par suite $(\sqrt{2} - 1) \in \mathbb{R}^{+*}$

On a $(\sqrt{3})^2 = 3$ et $(1)^2 = 1$ donc $\sqrt{3} > 1$

Par suite $(\sqrt{3}-1) \in \mathbb{R}^{+*}$

Donc: $a-b = (\sqrt{2}-1)(\sqrt{3}-1) \in \mathbb{R}^{+*}$ D'où a > b

3) On compare: $a = \sqrt{10}$ et $b = \sqrt{5} + \sqrt{2} - 1$

On calcul la différence :

$$a-b = \sqrt{10} - (\sqrt{5} + \sqrt{2} - 1) = \sqrt{5 \times 2} - (\sqrt{5} + \sqrt{2} - 1)$$

$$a-b = \sqrt{5} \times \sqrt{2} - \sqrt{5} - \sqrt{2} + 1 = \sqrt{5} \times (\sqrt{2} - 1) - (\sqrt{2} - 1)$$

On factorise par : $\sqrt{5}$ et par $(\sqrt{2}-1)$

Donc: $a-b = (\sqrt{2}-1)(\sqrt{5}-1)$

On a: $\sqrt{2} > 1$ car $(\sqrt{2})^2 = 2$ et $(1)^2 = 1$

Donc: $(\sqrt{2}-1) \in \mathbb{R}^{+*}$

Et on a: $\sqrt{5} > 1 \operatorname{car}(\sqrt{5})^2 = 5$ et $1^2 = 1$ donc : $(\sqrt{5} - 1) \in \mathbb{R}^{+*}$

Alors: $a-b = (\sqrt{2}-1)(\sqrt{5}-1) \in \mathbb{R}^{+*}$ et par suite: a > b

4) On compare : $a = 10\sqrt{51}$ et $b = 70 + \sqrt{2}$

Puisque a et b sont positifs il suffit de comparer

$$a^2$$
 et b^2 : on a $a^2 = (10\sqrt{51})^2 = 5100$

$$b^2 = (70 + \sqrt{2})^2 = 4900 + 140\sqrt{2} + 2 = 4902 + 140\sqrt{2}$$

 $a^2 - b^2 = 198 - 140\sqrt{2} = 2(99 - 70\sqrt{2})$

Et on a : $(99)^2 = 9801$ et $(70\sqrt{2})^2 = 9800$

Donc: $99 - 70\sqrt{2} \in \mathbb{R}^{+*}$

Equivaut à : $2(99-70\sqrt{2}) \in \mathbb{R}^{+*}$

Alors: $a^2-b^2>0$ donc a>b ($a \in \mathbb{R}^+$ et $b \in \mathbb{R}^+$)

5) On compare: $a = \frac{1+\sqrt{2}}{2+\sqrt{2}}$ et $b = \frac{4+\sqrt{2}}{7}$?

 $b-a = \frac{4+\sqrt{2}}{7} - \frac{1+\sqrt{2}}{2+\sqrt{2}} = \frac{4+\sqrt{2}}{7} - \frac{\left(1+\sqrt{2}\right)\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}$

$$b-a = \frac{4+\sqrt{2}}{7} - \frac{2-\sqrt{2}+\sqrt{2}-2}{4-2} = \frac{4+\sqrt{2}}{7} - \frac{\sqrt{2}}{2}$$

$$b - a = \frac{8 + 2\sqrt{2} - 7\sqrt{2}}{14} = \frac{8 - 5\sqrt{2}}{14}$$

On a: $8 > 5\sqrt{2}$ car $(8)^2 = 64$ et $(5\sqrt{2})^2 = 50$

Donc: $8-5\sqrt{2} \in \mathbb{R}^{+*}$

Donc on a aussi : $\frac{8-5\sqrt{2}}{14} \in \mathbb{R}^{+*}$

Par suite : b > a

6) On compare: $a = 3\sqrt{18} - \sqrt{72} + 2\sqrt{\frac{9}{2}}$

et $b = \sqrt{28} + \sqrt{32} - 2\sqrt{2}$

 $a - b = \left(3\sqrt{18} - \sqrt{72} + 2\sqrt{\frac{9}{2}}\right) - \left(\sqrt{28} + \sqrt{32} - 2\sqrt{2}\right)$

 $a-b = (9\sqrt{2} - 6\sqrt{2} + 3\sqrt{2}) - (2\sqrt{7} + 4\sqrt{2} - 2\sqrt{2})$

 $a-b = 9\sqrt{2} - 6\sqrt{2} + 3\sqrt{2} - 2\sqrt{7} - 4\sqrt{2} + 2\sqrt{2} = 4\sqrt{2} - 2\sqrt{7}$

On a: $4\sqrt{2} > 2\sqrt{7}$ car $(2\sqrt{7})^2 = 28$ et $(4\sqrt{2})^2 = 32$

Donc: $4\sqrt{2} - 2\sqrt{7} \in \mathbb{R}^{+*}$ Et par suite: a > b

7) $a-b = \frac{2-\sqrt{3}}{\sqrt{3}-1} - \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right) - \left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}$

 $a - b = \frac{\left(2\sqrt{3} + 2 - \left(\sqrt{3}\right)^2 - \sqrt{3}\right) - \left(\left(\sqrt{3}\right)^2 - 2\sqrt{3} + 1\right)}{\left(\sqrt{3}\right)^2 - 1^2}$

 $a-b = \frac{2\sqrt{3}+2-3-\sqrt{3}-3+2\sqrt{3}-1}{\left(\sqrt{3}\right)^2-1^2}.$

 $a - b = \frac{3\sqrt{3} - 5}{3 - 1} = \frac{3\sqrt{3} - 5}{2}$

On a: $3\sqrt{3} > 5$ car $(3\sqrt{3})^2 = 27$ et $(5)^2 = 25$

Donc: $3\sqrt{3} - 5 \in \mathbb{R}^{+*}$ et on a aussi: $\frac{3\sqrt{3} - 5}{2} \in \mathbb{R}^{+*}$

Par suite : a > b.

Exercice3: (**) $a \in \mathbb{R}$

1) Comparer 2a et $a^2 + 1$

2) Comparer : 4a-1 **et** $4a^2$

Corrigé: 1) $(a^2 + 1) - 2a = a^2 - 2a + 1 = (a - 1)^2 \ge 0$

Car : le carré est toujours positif.

Donc: $a^2 + 1 \ge 2a$ si $a \in \mathbb{R}$

2) On a $4a^2 - (4a - 1) = 4a^2 - 4a + 1 = (2a - 1)^2 \ge 0$

Donc: $4a^2 \ge 4a - 1$.

Exercice4: (**) Soient a et b deux nombres réels

 $tels que: a^2 + b^2 = 2$

1) Montrer que : $(a+b)^2 = 2(1+ab)$

Tronc commun Sciences BIOF

2) En déduire que : si a et b sont positifs alors $a+b>\sqrt{2}$

Corrigé: $a \in \mathbb{R}$ et $b \in \mathbb{R}$ et $a^2 + b^2 = 2$

1) On a:
$$(a+b)^2 = a^2 + 2ab + b^2 = (a^2 + b^2) + 2ab = 2 + 2ab$$

Donc:
$$(a+b)^2 = 2(1+ab)$$

2) On a $a \in \mathbb{R}^+$ $b \in \mathbb{R}^+$ équivaut à : $a \ge 0$ et $b \ge 0$

Donc: $a+b \ge 0$ et $ab \ge 0$ par suite: 1+ab > 1

Et puisque : $(a+b)^2 = 2(1+ab)$ alors $(a+b)^2 > 2$

Implique: $a+b>\sqrt{2}$ car $a+b\geq 0$

Exercice5: (**) Soit $x \in \mathbb{R}^+$;

Comparer: $2\sqrt{x} - 1$ et x

Corrigé: On a:

$$x - (2\sqrt{x} - 1) = x - 2\sqrt{x} + 1 = (\sqrt{x})^2 - 2\sqrt{x} \times 1 + 1^2 = (\sqrt{x} - 1)^2 \ge 0$$

Donc: $x \ge (2\sqrt{x} - 1)$ si $x \in \mathbb{R}^+$

Exercice6: (**) Soit $n \in \mathbb{N}$

On pose : $a = \sqrt{4n^2 + 1}$ et b = 2n + 1

Comparer les nombres : a et b

Corrigé: Pour comparer deux nombres positifs on compare leurs carrés :

On a:
$$a^2 = (\sqrt{4n^2+1})^2 = 4n^2+1$$
 et $b^2 = (2n+1)^2 = 4n^2+4n+1$

$$b^2 - a^2 = 4n^2 + 4n + 1 - (4n^2 + 1)$$

 $b^2 - a^2 = 4n^2 + 4n + 1 - 4n^2 - 1 = 4n \ge 0$ Car $n \in \mathbb{N}$

Donc: $b^2 \ge a^2$ et par suite $b \ge a$

Car $a \in \mathbb{R}^+$ et $b \in \mathbb{R}^+$

Exercice7: (**) Soient a ;b et c des réels

strictement positifs tel que : $\frac{a}{b} \le 1$.

Montrer que : $\frac{a}{b} \le \frac{a+c}{b+c}$.

Corrigé : Comparer $\frac{a}{b}$ et $\frac{a+c}{b+c}$ revient à étudier le

signe de : $\frac{a+c}{b+c} - \frac{a}{b}$

$$\frac{a+c}{b+c} - \frac{a}{b} = \frac{b(a+c)-a(b+c)}{b(b+c)} = \frac{ba+bc-ab-ac}{b(b+c)}$$

Donc:
$$\frac{a+c}{b+c} - \frac{a}{b} = \frac{bc - ac}{b(b+c)} = \frac{c(b-a)}{b(b+c)}$$

Et puisque : b et c des réels strictement positifs

Alors: b(b+c) > 0 et on a aussi: $\frac{a}{b} \le 1$

Donc: $b \times \frac{a}{b} \le b \times 1$ c'est à dire: $a \le b$

Par suite: $0 \le b - a$.

Donc: $\frac{a+c}{b+c} - \frac{a}{b} \ge 0$ et par conséquent: $\frac{a+c}{b+c} \ge \frac{a}{b}$.

Exercice8: (**) *Soit a* est un réel strictement positif.

1. Montrer que : Si a > 1, alors $a^3 > a^2 > a$.

2. Montrer que : si a < 1, alors $a^3 < a^2 < a$.

Corrigé : De l'hypothèse a > 1, on déduit d'une part que $a^2 > a$ (on multiplie les deux membres par a > 0) et d'autre part que : $a^3 > a^2$ (on multiplie par $a^2 > 0$). Donc : $a^2 > a$ et $a^3 > a^2$ et par suite : $a^3 > a^2 > a$.

De la même façon, lorsque : 0 < a < 1 on démontre que: $a^3 < a^2 < a$.

Exercice9: (**) Soit $x \in \mathbb{R}^{*+}$

1) Comparer: $\sqrt{x+1} + \sqrt{x}$ et $\sqrt{x+1} + \sqrt{x+2}$

2) En déduire une comparaison de :

$$\sqrt{x+1} - \sqrt{x}$$
 et $\sqrt{x+2} - \sqrt{x+1}$

Corrigé:1) On a $x+2 \ge x$ car $(x+2)-x \ge 0$

Donc $\sqrt{x+2} \ge \sqrt{x}$

On a journat $\sqrt{x+1}$ au deux membres on trouve :

$$\sqrt{x+2} + \sqrt{x+1} \ge \sqrt{x} + \sqrt{x+1}$$

$$2)\sqrt{x+2} - \sqrt{x+1} = \frac{\left(\sqrt{x+2} - \sqrt{x+1}\right)\left(\sqrt{x+2} + \sqrt{x+1}\right)}{\sqrt{x+2} + \sqrt{x+1}}$$

(Le conjugué)

$$\sqrt{x+2} - \sqrt{x+1} = \frac{\left(\sqrt{x+2}\right)^2 - \left(\sqrt{x+1}\right)^2}{\sqrt{x+2} + \sqrt{x+1}} = \frac{x+2-x-1}{\sqrt{x+2} + \sqrt{x+1}}$$

Donc:
$$\sqrt{x+2} - \sqrt{x+1} = \frac{1}{\sqrt{x+2} + \sqrt{x+1}}$$

Et on aussi :
$$\sqrt{x+1} - \sqrt{x} = \frac{\left(\sqrt{x+1} - \sqrt{x}\right)\left(\sqrt{x+1} + \sqrt{x}\right)}{\sqrt{x+1} + \sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} = \frac{\left(\sqrt{x+1}\right)^2 - \left(\sqrt{x}\right)^2}{\sqrt{x+1} + \sqrt{x}} = \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

Et puisque : $\sqrt{x+2} + \sqrt{x+1} \ge \sqrt{x} + \sqrt{x+1}$

On a donc:
$$\frac{1}{\sqrt{x+2} + \sqrt{x+1}} \le \frac{1}{\sqrt{x} + \sqrt{x+1}}$$

D'où $\sqrt{x+2} - \sqrt{x+1} \le \sqrt{x+1} - \sqrt{x}$

Exercice 10: (**) Soient $a \in \mathbb{R}^{*+}$ et $b \in \mathbb{R}^{*+}$

Comparer:
$$x = \frac{7a+2b}{7a}$$
 et $y = \frac{8b}{7a+2b}$

Corrigé : On a :
$$x - y = \frac{7a + 2b}{7a} - \frac{8b}{7a + 2b}$$

Donc: $x - y = \frac{(7a + 2b)^2 - 7a \times 8b}{7a(7a + 2b)}$

Donc: $x - y = \frac{49a^2 + 14ab + 14ab + 4b^2 - 56a \times b}{7(3)}$

 $x - y = \frac{49a^2 - 28a \times b + 4b^2}{7a(7a + 2b)} = \frac{(7a)^2 - 2 \times 7a \times 2b + (2b)^2}{7a(7a + 2b)}$

Donc: $x - y = \frac{(7a - 2b)^2}{7a(7a + 2b)} \in \mathbb{R}^+$

Car: $7a(7a+2b) \in \mathbb{R}^+$ et $(7a-2b)^2 \in \mathbb{R}^+$

D'où $x \ge y$

Exercice11: (**)

Soit *x* un élément de l'intervalle $]-1,+\infty[$

Comparer : 12 et -5x+1 on utilisant les propriétés de l'ordre.

Corrigé: On a $x \in]-1; +\infty[$ donc : $x \succ -1$

Donc: $-5x < -5 \times (-1)$ c'est à dire: -5x < 5

Donc: $\bigcirc -5x+1 < 6$ et on sait que : 6 < 12 \bigcirc

Donc : de ① et ② en déduit que : -5x+1 < 12

Exercice12: (**) Soit x un élément de l'intervalle

 $[6, +\infty[$; Montrer que : $2 - \frac{2}{3} + \frac{3}{3} > 0.5$

On utilisant les propriétés de l'ordre.

Corrigé : On a $x \in]6; +\infty[$ donc : $x \succ 6$

Donc: $\frac{1}{r} \prec \frac{1}{6}$ donc: $\frac{2}{r} \prec \frac{2}{6}$ car $2 \succ 0$

C'est-à-dire : $\frac{2}{r} < \frac{1}{3}$ par suite : $-\frac{2}{r} > -\frac{1}{3}$ ①

Or on a: $\frac{3}{x^2} \ge 0$ ② car $x^2 \ge 0$ et $3 \ge 0$

① + ② donne : $-\frac{2}{r} + \frac{3}{r^2} > -\frac{1}{3}$ et on ajoute 2

On trouve : $2 - \frac{2}{r} + \frac{3}{r^2} > 2 - \frac{1}{2}$

C'est-à-dire : $2 - \frac{2}{r} + \frac{3}{r^2} > \frac{5}{3}$.

Or on a: $\frac{5}{2} > 0.5$ donc: $2 - \frac{2}{x} + \frac{3}{x^2} > 0.5$

Exercice13:(**) Soient $x \in \mathbb{R}^{*+}$; $y \in \mathbb{R}^{*+}$ et $x \neq y$

Donner le signe du quotient suivant : $Z = \frac{x^2 - y^2}{1 - 1}$.

Corrigé: x > 0 et y > 0 et $x \neq y$

Tronc commun Sciences BIOF

 $Z = \frac{x^2 - y^2}{1 - 1} = \frac{x^2 - y^2}{y - x} = (x - y)(x + y) \times \frac{xy}{y - x}$

Donc: $Z = (x - y)(x + y) \times \frac{xy}{-(x - y)} = -xy(x + y)$

On a x > 0 et y > 0 donc xy > 0 c'est-à-dire : -xy < 0Et on a: x+y>0 par suite: Z<0.

Exercice14: (**) Calculer les expressions suivantes (éliminer le signe de la valeur absolue).

1) |-3|

4) $|\sqrt{5} - 2|$ 5) $|1 - \sqrt{3}|$ 7) $|\sqrt{2} - \sqrt{7}|$ 8) $|3 - 2\sqrt{3}|$

9) $A = |4 - 2\sqrt{3}| - |5 - 3\sqrt{3}| - |9 - 5\sqrt{3}|$

Corrigé :1) $\left| -3 \right| = -(-3) = 3$ 2) $\left| 3 \right| = 3$ 3) $\left| -\frac{3}{5} \right| = \frac{3}{5}$

4) $|\sqrt{5}-2|$ On compare: $\sqrt{5}$ et 2

On a $(\sqrt{5})^2 = 5 \text{ et}(2)^2 = 4$ donc $\sqrt{5} > 2$

Par suite $(\sqrt{5}-2) \in \mathbb{R}^{+*}$ Donc $|\sqrt{5}-2| = \sqrt{5}-2$

5) $|1-\sqrt{3}|$ On compare: $\sqrt{3}$ et 1

On a $(\sqrt{3})^2 = 3 \text{ et}(1)^2 = 1$ donc $\sqrt{3} > 1$

Par suite $(1-\sqrt{3}) \in \mathbb{R}^{-*}$.

Donc: $|1-\sqrt{3}| = -(1-\sqrt{3}) = -1+\sqrt{3}$

6) $|\pi - 4| = -(\pi - 4) = -\pi + 4$ car $4 > \pi$

7) $\left| \sqrt{2} - \sqrt{7} \right|$ on compare : $\sqrt{7}$ et $\sqrt{2}$

On a $(\sqrt{7})^2 = 7 \text{ et}(\sqrt{2})^2 = 2$ donc: $\sqrt{7} > \sqrt{2}$

Par suite: $\sqrt{2} - \sqrt{7} < 0$.

Donc $|\sqrt{2} - \sqrt{7}| = -(\sqrt{2} - \sqrt{7}) = -\sqrt{2} + \sqrt{7}$

8) On a: $3 < 2\sqrt{3}$ car $3^2 < (2\sqrt{3})^2$

Alors: $3-2\sqrt{3} \in \mathbb{R}^-$.

Donc; $|3-2\sqrt{3}| = -(3-2\sqrt{3}) = -3+2\sqrt{3}$

9) On a: $4 > 2\sqrt{3}$ alors: $4 - 2\sqrt{3} \in \mathbb{R}^+$

On a: $3\sqrt{3} > 5$ alors: $5 - 3\sqrt{3} \in \mathbb{R}^{-1}$

On a: $9 > 5\sqrt{3}$ alors: $9 - 5\sqrt{3} \in \mathbb{R}^+$ $A = |4 - 2\sqrt{3}| - |5 - 3\sqrt{3}| - |9 - 5\sqrt{3}|$

 $A = 4 - 2\sqrt{3} - -(5 - 3\sqrt{3}) - (9 - 5\sqrt{3})$

 $A = 4 - 2\sqrt{3} + 5 - 3\sqrt{3} - 9 + 5\sqrt{3} = 0$

Tronc commun Sciences BIOF

Exercice15 : (Résoudre les équations suivantes :

1)
$$|x-1| = 5$$

2)
$$|2x+1| = |x-3|$$

$$|x+2| = -1$$

3)
$$|x+2| = -1$$
 4) $|x-1| + |2-x| - 3 = 0$

Corrigé :1) |x-1| = 5

Signifie que : x-1=5 ou x-1=-5

Signifie que : x = 6 ou x = -4 Donc : $S = \{-4, 6\}$

2)
$$|2x+1| = |x-3|$$

Signifie que : 2x+1=x-3 ou 2x+1=-(x-3)

Signifie que : 2x+1=x-3 ou 2x+1=-x+3

Signifie que : x = -4 ou $x = \frac{2}{3}$ Donc : $S = \left\{-4, \frac{2}{3}\right\}$

$$3) |x+2| = -1 \quad S = \emptyset$$

$$\operatorname{Car} |x+2| \ge 0$$

4)
$$|x-1|+|3-x|-3=0$$

x-1=0 Signifie que : x=13-x=0 Signifie que : x=3

x	-∞	1 ;	3 +∞
x-1	- (+	+
x-1	-x+1 (x-1	x-1
3-x	+	+) –
3-x	3-x	3-x	x-3
x-1 + 3-x -3	1-2x	-1	2x-7

Si: $x \le 1$ alors: L'équation |x-1| + |3-x| - 3 = 0

Devient: -(x-1)+(3-x)-3=0

Ce qui signifie que : 4-2x-3=0

Ce qui signifie que : $x = \frac{1}{2} \le 1$; Donc : $S_1 = \left\{\frac{1}{2}\right\}$

Si: $1 \le x \le 3$ alors l'équation devient :

$$(x-1)+(3-x)-3=0$$

Ce qui signifie que : -1=0 Donc : $S_2 = \emptyset$

Si : $x \ge 3$ alors l'équation devient :

$$(x-1)-(3-x)-3=0$$

Ce qui signifie que : 2x-7=0

Ce qui signifie que : $x = \frac{7}{2} \ge 3$ Donc : $S_3 = \left\{ \frac{7}{2} \right\}$

Par conséquent : $S = S_1 \cup S_2 \cup S_3 = \left\{ \frac{1}{2}, \frac{7}{2} \right\}$

Exercice16: (**) 1) Calculer $(3\sqrt{2}-5)^2$

Et comparer : $3\sqrt{2}$ et 5.

2) Simplifier $\sqrt{43-30\sqrt{2}}$.

Corrigé:1)

$$(3\sqrt{2}-5)^2 = (3\sqrt{2})^2 - 2 \times 3\sqrt{2} \times 5 + (5)^2 = 18 - 30\sqrt{2} \times 5 + 25$$

Donc:
$$(3\sqrt{2}-5)^2 = 43-30\sqrt{2}$$

On a:
$$(3\sqrt{2})^2 = 18$$
 et $(5)^2 = 25$ donc $3\sqrt{2} > 5$

Par suite: $3\sqrt{2} - 5 \in \mathbb{R}^{-1}$

2)
$$\sqrt{43-30\sqrt{2}} = \sqrt{(3\sqrt{2}-5)^2} = |3\sqrt{2}-5| = -(3\sqrt{2}-5)$$

$$Car 3\sqrt{2} - 5 \in \mathbb{R}^{-1}$$

Par suite : $\sqrt{43-30\sqrt{2}} = -3\sqrt{2} + 5$

Exercice17: (*) Compléter les expressions suivantes à l'aide des symboles $: \in ; \notin ; \subset ; \not\subset :$

0... [0;5]; 5... [0;5]; 2... [1;5]; 1.... $[2;+\infty[$

-1....] $-\infty$;0]; {0;1;2}...[0;3[; {0;1;2}...[0;2[]0;3[....Q.

Corrigé: $0 \notin [0;5]$; $5 \in [0;5]$; $2 \in [1;5]$;

 $1 \notin [2; +\infty[; -1 \in]-\infty; 0]; \{0; 1; 2\} \subset [0; 3[;$

 $\{0;1;2\} \not\subset \left[0;2\right[\ ; \ \left]0;3\right] \not\subset \mathbb{Q} \ car \sqrt{2} \in \left]0;3\right[\ et \sqrt{2} \not\in \mathbb{Q}$

Exercice18: (*) Représenter les ensembles suivants sur la droite réelle puis les écrire à l'aide d'intervalles:

a)
$$-3 \le x \le 2$$
 b)

b)
$$x \ge 7$$

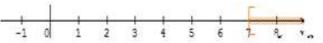
d)
$$-4 \le x < 1$$

d)
$$-4 \le x < 1$$
 e) $-\frac{1}{2} \le x \le \frac{1}{2}$.

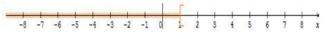
Corrigé: a) $-3 \le x \le 2$ Signifie que: $x \in [-3, 2]$



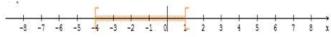
b) $x \ge 7$ Signifie que : $x \in [7; +\infty]$



c) 1 > x Signifie que : $x \in]-\infty;1[$



d) $-4 \le x < 1$ Signifie que: $x \in [-4;1[$



e) $-\frac{1}{2} \le x \le \frac{1}{2}$ Signifie que : $x \in \left[-\frac{1}{2}; \frac{1}{2} \right]$

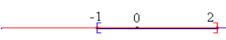
Exercice19: (**) Simplifier si c'est possible

- 1) $[2;5] \cap [4;6]$
- 2) [2;5] \cup [4;6]
- 3)] $-\infty$; 2] \cap [-1; $+\infty$ [4)] $-\infty$; 2] \cup [-1; $+\infty$ [

Corrigé:1) $[2;5] \cap [4;6] = [4;5]$

2) $[2;5] \cup [4;6] = [2;6].$

3)]- ∞ ; 2] \cap [-1; + ∞ [= [-1; 2]



4)] $-\infty$; 2] \cup [-1; $+\infty$ [=] $-\infty$; $+\infty$ [

Exercice20: (**) Calculer $I \cap J$ et $I \cup J$ dans les cas suivants.

- 1) I = [-3,7] et $J = [-1,+\infty[$
- 2) $I = -\infty,5$ et J = [4;10]
- 3) I = [0,10[et J = [-5;-1]

$$4) I = \left[\frac{-2}{3}, 2\right]$$

4) $I = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ et $J = \begin{bmatrix} -1, \frac{3}{2} \end{bmatrix}$

Corrigé: 1) $I \cap J = [-1,7]$ et $I \cup J = [-3;+\infty[$

- 2) $I \cap J = [4,5[$ et $I \cup J =]-\infty;10]$
- 3) $I \cap J = \emptyset$ et $I \cup J = [-5;10]$

4)
$$I \cap J = \left[-\frac{2}{3}; \frac{3}{2} \right]$$
 et $I \cup J = \left[-1, 2 \right]$

Exercice21: (**) Traduire chacune des inégalités suivantes ou encadrements par l'appartenance à un intervalle qui convient; 1) $x \ge -3$ 2) x < 5

- 3) $1 \le 2x \le 4$
- 5) $-8 \le 2 2x \le 6$
- 4) 0 < 0x 2 = 6 $6) x > -2 \text{ et } x \le 2$ > 0 $8) x > 1 \text{ et } x \le 0$
- 7) $x \le 0$ ou x > 0

- 9) |x-2| < 1 10) $|x+1| \ge 2$ 11) 1 < |x-1| < 2

Corrigé :1) $x \ge -3$ Equivaut à : $x \in [-3, +\infty]$.

- 2) x < 5 Equivalt à: $x \in]-\infty, 5[$.
- 3) $1 \le 2x \le 4$ équivaut à : $\frac{1}{2} \times 1 \le \frac{1}{2} \times 2x \le 4 \times \frac{1}{2}$

Signifie que : $\frac{1}{2} \le x \le 2$ c'est à dire : $x \in \left| \frac{1}{2}, 2 \right|$

- 4) $0 < 6x 2 \le 10$ équivaut à :
- $0+2<6x-2+2\le 10+2$ équivaut à : $2<6x\le 12$

Équivaut à : $2 \times \frac{1}{2} < 6x \times \frac{1}{2} \le 12 \times \frac{1}{2}$

C'est à dire : $1 < 3x \le 6$

Tronc commun Sciences BIOF

Équivaut à : $1 \times \frac{1}{3} < 3x \times \frac{1}{3} \le 6 \times \frac{1}{3}$

Équivaut à : $\frac{1}{3} < x \le 2$ c'est à dire : $x \in \left[\frac{1}{3}, 2\right]$

5) $-8 \le 2 - 2x \le 6$ Équivaut à : $-8 - 2 \le 2 - 2x - 2 \le 6 - 2$ Équivaut à : $-10 \le -2x \le 4$

Équivaut à : $-10 \times \frac{1}{2} \le -2x \times \frac{1}{2} \le 4 \times \frac{1}{2}$

Équivaut à : $-5 \le -x \le 2$ c'est à dire : $-2 \le x \le 5$

Équivaut à : $x \in [-2,5]$

6) x > -2 et $x \le 2$

Signifie que : $x \in]-2; +\infty[$ et $x \in]-\infty, 2]$

Signifie que: $x \in]-2; +\infty[\cap]-\infty, 2]$

Signifie que: $x \in]-2;2]$

7) $x \le 0$ ou x > 0 signifie: $x \in]-\infty, 0]$ ou $x \in]0; +\infty[$

Signifie que: $x \in]-\infty,0] \cup]0;+\infty[$

Par suite : $x \in \mathbb{R}$

8) x > 1 et $x \le 0$ signifie: $x \in]1; +\infty[$ et $x \in]-\infty, 0]$

Signifie que: $x \in]-\infty, 0] \cap]1; +\infty[$

Par suite : $x \in \emptyset$

9) |x-2| < 1 signifie -1 < x-2 < 1

C'est-à-dire: -1+2 < x-2+2 < 1+2

Signifie 1 < x < 3 c'est-à-dire que : $x \in [1;3]$

10) $|x+1| \ge 2$ signifie $x+1 \ge 2$ ou $x+1 \le -2$

Signifie que : $x \ge 1$ ou $x \le -3$

Par suite : $x \in]-\infty; -3] \cup [1; +\infty[$

11) 1 < |x-1| < 2 Signifie $\begin{cases} |x-1| < 2 \\ |x-1| > 1 \end{cases}$

Signifie: $\begin{cases} -2 < x - 1 < 2 \\ et \end{cases}$ $\operatorname{ssi} \left\{ \begin{array}{l} -1 < x < 3 \\ et \end{array} \right.$ |x-1| < -1 ou |x-1| > 1

C'est-à-dire que : $x \in]-1;3[\cap(]-\infty;0[\cup]2;+\infty])$

C'est-à-dire que : $x \in [-1;3[\cap]-\infty;0[\cup]-1;3[\cap]2;+\infty]$

Signifie $x \in [-1, 0] \cup [2, 3]$

Exercice22: (**) Résoudre les systèmes suivants:

1) $\begin{cases} x \ge -3 \\ x > 2 \end{cases}$ $\begin{cases} x > 5 \\ x \le 4 \end{cases}$ 3) $\begin{cases} x > 7 \\ x \ge 0 \end{cases}$ 4) $\begin{cases} -3 \le x \le 0 \\ -7 < x < 10 \end{cases}$

Corrigé: c'est l'intersection 1) $\begin{cases} x \ge -3 \\ x > 2 \end{cases}$

 $x \ge -3$ Signifie que: $x \in [-3, +\infty]$

Et x > 2 Signifie que : $x \in [2, +\infty]$

Donc: $S = [2, +\infty) \cap [-3, +\infty] = [2, +\infty]$

2)
$$\begin{cases} x > 5 \\ x \le 4 \end{cases}$$
 On a : $x \le 4$ Signifie que : $x \in]-\infty, 4]$

Et x > 5 Signifie que : $x \in]5, +\infty[$

Donc: $S = [5, +\infty[\cap] -\infty, 4] = \emptyset$

3) x > 7 Signifie que : $x \in [7, +\infty)$

Et $x \ge 0$ Signifie que : $x \in [0, +\infty]$

Donc: $S = [7, +\infty) \cap [0, +\infty] = [7, +\infty]$

 $x \in]-7;10[$ Signifie que : -7 < x < 10

 $-3 \le x \le 0$ Signifie que: $x \in [-3,0]$

Donc: $S =]-7;10[\cap [-3;0] = [-3;0]$

Exercice23: (**) x est un réel tel que : -1 < x < 2.

On pose : B = -2x - 3. Trouver un encadrement de B et trouer son amplitude

Corrigé : -1 < x < 2 Signifie que : -4 < -2x < 2

Signifie que : -4-3 < -2x-3 < 2-3

Signifie que : -7 < -2x - 3 < -1

Donc : -7 < B < -1 : encadrement de B

-1-(-7)=-1+7=6: est l'amplitude de l'encadrement

Exercice24: (*) On considère l'intervalle

I = [-3; 4]

Trouver le milieu et l'amplitude et le rayon de l'intervalle I

Corrigé: $\frac{-3+4}{2} = \frac{1}{2}$ Est le milieu de l'intervalle *I*.

4-(-3)=7 Est l'amplitude de l'intervalle I.

 $\frac{4-(-3)}{2} = \frac{7}{2}$ Est le rayon de l'intervalle I.

Exercice25: (**) Déterminer un intervalle ouvert I sachant que son centre est -3 et son rayon est 4

Corrigé:

Pour déterminer a;b on va déterminer a et b.

On a donc: $\frac{a+b}{2} = -3$ et $\frac{b-a}{2} = 4$

On va résoudre donc le système suivant :

(1)a+b=-6(1)+(2) Donne: 2b=2 donc: b=1(2)b-a=8

Par suite : a+1 = -6 donc : a = -7

Par conséquent : l'intervalle ouvert est I =]-7;1[

Tronc commun Sciences BIOF

Exercice26: (**) Calculer le rayon de l'intervalle

$$I = \left[\frac{1}{2}; b\right]$$
 sachant que son centre est : $c = \frac{7}{2}$

Corrigé: Le rayon de l'intervalle I est $r = \frac{b - \frac{1}{2}}{2}$

Nous allons calculer la deuxième borne b:

Nous avons le centre $c = \frac{7}{2}$ et nous savons que :

 $c = \frac{b + \frac{1}{2}}{2}$ D'où : $\frac{7}{2} = \frac{b + \frac{1}{2}}{2}$ ou encore : $2\frac{7}{2} = b + \frac{1}{2}$

Donc: $b = \frac{13}{2}$. Par suite: $r = \frac{\frac{13}{2} - \frac{1}{2}}{2} = \frac{6}{2} = 3$

Exercice27: (**) Soit $x \in \mathbb{R}$ tel que : $\left| x + \sqrt{2} \right| < \frac{1}{2}$

Trouver l'intervalle qui correspond à cette inégalité.

Corrigé: $(x \in \mathbb{R} \text{ et } |x + \sqrt{2}| < \frac{1}{2})$

Signifie $(x \in \mathbb{R} \text{ et } |x-c| < r) \text{ avec} : c = -\sqrt{2} \text{ et } r = \frac{1}{2}$

Donc: $(x \in \mathbb{R} \text{ et } |x + \sqrt{2}| < \frac{1}{2})$ signifie (x appartient à

l'intervalle ouvert de centre $c = -\sqrt{2}$ et de rayon

$$r = \frac{1}{2}$$
 C'est-à-dire : $x \in \left[-\sqrt{2} - \frac{1}{2}, -\sqrt{2} + \frac{1}{2} \right]$

Exercice28: (**) Trouver les nombres c et r tels que : $|x-c| \le r$ et $x \in [-4, 6]$

Corrigé: $|x-c| \le r$ signifie x appartient à l'intervalle de centre c et de rayon r

Or $x \in [-4; 6]$

Donc: $c = \frac{-4+6}{2} = \frac{2}{2} = 1$ et $r = \frac{6-(-4)}{2} = \frac{10}{2} = 5$

Exercice29: (**) (Résolution des inéquations) Résoudre les inéquations suivantes :

1) $|x-1| \le 2$ 2) $|x+2| \ge 3$ 3) |2x+1| < 6

Corrigé:1) $|x-1| \le 2$ Signifie que: $-2 \le x-1 \le 2$

Signifie: $-2+1 \le x-1+1 \le 2+1$

Signifie: $-1 \le x \le 3$ donc: S = [-1;3]

2) $|x+2| \ge 3$ Signifie $x+2 \ge 3$ ou $x+2 \le -3$

Signifie: $x \ge 1$ ou $x \le -5$

Signifie: $x \in [1; +\infty[$ ou $x \in]-\infty; -5]$

Donc $S =]-\infty; -5] \cup [1; +\infty[$

3) |2x+1| < 6 Signifie -6 < 2x+1 < 6

Signifie que : -6-1 < 2x+1-1 < 6-1

Signifie que : -7 < 2x < 5

Signifie $-7 \times \frac{1}{2} < 2x \times \frac{1}{2} < 5 \times \frac{1}{2}$

C'est-à-dire que : $\frac{-7}{2} < x < \frac{5}{2}$ donc : $S = \left] -\frac{7}{2}; \frac{5}{2} \right[$

Exercice30: (***) Résoudre l'inéquation

suivante : |2x-1|+3|x-2| > 4

Corrigé : x-2=0 Signifie que : x=2

2x-1=0 Signifie que : $x=\frac{1}{2}$

x	$-\infty$	2 :	2 +∞
2x-1	- (+	+
2x-1	-2x+1 (2x-1	2x-1
x-2	_	- () +
x-2	-x+2	-x+2	x-2
2x-1 +3 x-2	7-5x	-x+5	5x-7

Si:
$$x \le \frac{1}{2}$$
 alors: $|2x-1|+3|x-2| > 4$

Devient: $-(2x-1)-3(x-2)-4 \succ 0$

Ce qui signifie que : $-5x+3 \succ 0$

C'est-à-dire : $x < \frac{3}{5}$

Donc: $S_1 = \left[-\infty; \frac{3}{5} \right] \cap \left[-\infty; \frac{1}{2} \right] = \left[-\infty; \frac{1}{2} \right]$

Si: $\frac{1}{2} \le x \le 2$ alors l'inéquation devient :

$$(2x-1)-3(x-2)-4 \succ 0$$

Ce qui Signifie que : $-x+1 \succ 0$

Signifie que : $x \prec 1$

Donc: $S_2 = \left[\frac{1}{2}; 2\right] \cap \left] -\infty; 1\right] = \left[\frac{1}{2}; 1\right[$

Si : $x \ge 2$ alors l'inéquation

devient (2x-1)+3(x-2)-4 > 0

Ce qui Signifie que : $5x-11 \succ 0$

Ce qui Signifie que : $x > \frac{11}{5}$

Donc: $S_3 = \left[\frac{11}{5}; +\infty \right] - \left[2; +\infty \right] = \left[\frac{11}{5}; +\infty \right]$

Par conséquent :

 $S = S_1 \cup S_2 \cup S_3 = \left] - \infty; \frac{1}{2} \right] \cup \left[\frac{1}{2}; 1 \right[\ \cup \ \left] \frac{11}{5}; + \infty \right[$

Tronc commun Sciences BIOF

Ce qui Signifie que $S = \left[-\infty; 1\right] \cup \left[\frac{11}{5}; +\infty\right]$

Exercice31: (**) Soient x et y deux réels

différents et non nuls tels que: $|x| < \frac{1}{4}$ et $|y-2| < \frac{1}{4}$

Montrer que : $\frac{7}{5} < \frac{2y}{y-x} < 3$

Corrigé: $|x| < \frac{1}{4}$ Signifie que : $-\frac{1}{4} < x < \frac{1}{4}$

Donc: $-\frac{1}{4} < -x < \frac{1}{4} (1)$

Et nous avons : $|y-2| < \frac{1}{4}$ Signifie $-\frac{1}{4} < y-2 < \frac{1}{4}$

Signifie que: $-\frac{1}{4} + 2 < y - 2 + 2 < \frac{1}{4} + 2$

C'est-à-dire : $\frac{7}{4} < y < \frac{9}{4} (2)$

En sommant (1) et (2) nous déduisons :

 $\frac{6}{4} < y - x < \frac{10}{4}$ cad $\frac{3}{2} < y - x < \frac{5}{2}$

Cette inégalité est équivalente à : $\frac{2}{5} < \frac{1}{y-x} < \frac{2}{3} (3)$

De (2) nous déduisons : $\frac{7}{2} < 2y < \frac{9}{2}$ (4)

(3) et (4) Donnent par multiplication : $\frac{7}{5} < \frac{2y}{y-x} < 3$

Exercice32: (**) Soient $\frac{1}{4} < x < \frac{1}{2}$ et $|4x + y| < \frac{1}{3}$

Montrer que : $\frac{y}{x} \in \left[-\frac{28}{3}; -\frac{4}{3} \right]$

Corrigé : On a : $|4x + y| < \frac{1}{3}$ Signifie $-\frac{1}{3} < 4x + y < \frac{1}{3}$ (1)

Et on a : $\frac{1}{4} < x < \frac{1}{2}$ donc $1 \le 4x \le 2$

Signifie $-2 \le -4x \le -1$ (2)

(1)+(2) donne: $-\frac{1}{3}+(-2)<4x+y+(-4x)<\frac{1}{3}+(-1)$

(2) qui signifie : $-\frac{7}{3} < y < \frac{-2}{3}$

Par suite : $\frac{2}{3} < -y < \frac{7}{3}$ et on a aussi : $2 < \frac{1}{x} < 4$

Donc: $\frac{2}{3} \times 2 < \frac{1}{x} \times (-y) < \frac{7}{3} \times 4$ C'est-à-dire: $\frac{4}{3} < -\frac{y}{x} < \frac{28}{3}$

Par suite: $-\frac{28}{3} < \frac{y}{x} < -\frac{4}{3}$ donc: $\frac{y}{x} \in \left[-\frac{28}{3}; -\frac{4}{3} \right]$

8

Tronc commun Sciences BIOF

Exercice33: (***) Soient x et y deux réels tels

que:
$$y \ge -2$$
 et $x \le \frac{1}{5}$ et $x - y = 1$

1) Calculer:
$$E = \sqrt{(5x-1)^2} + \sqrt{(5y+10)^2}$$
.

2) Montrer que :
$$-1 \le x \le \frac{1}{5}$$
 et $-2 \le y \le -\frac{4}{5}$.

3) Calculer:
$$F = |x + y + 3| + |x + y + \frac{3}{5}|$$
.

Corrigé:1) On a:

$$E = \sqrt{(5x-1)^2} + \sqrt{(5y+10)^2} = |5x-1| + |5y+10|$$

Or on a:
$$x \le \frac{1}{5}$$
 donc: $5x \le 1$

Qui signifie que :
$$5x-1 \le 0$$

On a aussi:
$$y \ge -2$$
 donc: $5y \ge -10$

Qui signifie que :
$$5y+10 \ge 0$$

Donc:
$$E = |5x-1| + |5y+10| = -(5x-1) + (5y+10)$$

Car
$$5x-1 \le 0$$
 et $5y+10 \ge 0$

Donc:
$$E = -5x + 1 + 5y + 10 = -5(x - y) + 11 = -5 \times 1 + 11 = 6$$

$$Car x - y = 1$$

2) a)Pour montrer que $-1 \le x \le \frac{1}{5}$ il suffit de

montrer que :
$$-1 \le x$$
 car : $x \le \frac{1}{5}$.

On sait que:
$$y \ge -2$$
 et $x - y = 1$

Ce qui signifie que
$$x-1=y$$

Donc:
$$x-1 \ge -2$$
 par suite : $x \ge -1$

b) Pour montrer que
$$-2 \le y \le -\frac{4}{5}$$

il suffit de montrer que : $y \le -\frac{4}{5}$ car $-2 \le y$.

On sait que:
$$x \le \frac{1}{5}$$
 et $x - y = 1$

Ce qui signifie que :
$$x = y + 1$$
.

Donc:
$$y+1 \le \frac{1}{5}$$
 par suite: $y \le \frac{1}{5} - 1$

C'est-à-dire :
$$y \le -\frac{4}{5}$$
.

3) Calculons:
$$F = |x + y + 3| + |x + y + \frac{3}{5}|$$

On a:
$$-1 \le x \le \frac{1}{5}$$
 et $-2 \le y \le -\frac{4}{5}$

Donc:
$$-1-2 \le x+y \le \frac{1}{5} + \left(-\frac{4}{5}\right)$$
.

Qui signifie que: $x + y \le \frac{-3}{5}$.

Signifie que:
$$0 \le x + y + 3$$
 et $x + y + \frac{3}{5} \le 0$

Donc:
$$|x+y+3| = x+y+3$$

et
$$\left| x + y + \frac{3}{5} \right| = -\left(x + y + \frac{3}{5} \right) = -x - y - \frac{3}{5}$$

Par suite:
$$F = x + y + 3 - x - y - \frac{3}{5} = 3 - \frac{3}{5} = \frac{12}{5}$$
.

Exercice34: (**) Sachant que:

 $(\pi = 3,1415926535897932384626433832795...)$

- 1) Montrer que : 3,14 est une valeur approchée décimale du réel π à 10^{-2} près
- 2) Donner une valeur approchée de du réel π à 10^{-5} près

Corrigé :1) On a : $3,13 < \pi < 3,15$

Donc:
$$3,13-3,14 < \pi - 3,14 < 3,15-3,14$$

Donc:
$$-0.01 < \pi - 3.14 < 0.01$$

Donc:
$$|\pi - 3,14| < 10^{-2}$$
.

Qui signifie que : 3,14 est une valeur approchée du réel π à 10^{-2} près

2) On a : $3,14159 < \pi < 3,14161$ donc :

$$3,14159 - 3,14160 < \pi - 3,14160 < 3,14161 - 3,14160$$

Donc:
$$-10^{-5} < \pi - 3{,}14160 < -10^{-5}$$

Donc:
$$|\pi - 3,14160| < 10^{-5}$$

Qui signifie que : 3,14160 est une valeur approchée du réel π à 10^{-5} près.

Exercice35: (** sachant que :
$$(\sqrt{3} = 1.732050808...)$$

Donner un encadrement du réel $\sqrt{3}$ à 10^{-2} près Et préciser une valeur approchée décimale par défaut et par excès à 10^{-2} près.

Corrigé : On a : $(\sqrt{3} \approx 1.732050808...)$

Donc ①
$$1.73 \le \sqrt{3} \le 1.74$$
 et ②

$$1.732 \le \sqrt{3} \le 1.733$$

- ① Est un encadrement du réel $\sqrt{3}$ à 1.74–1.73 près C'est-à-dire : à $10^{-2} = 0.01$ près
- 2 Est un encadrement du réel $\sqrt{3}$ à 1.733–1.732 près C'est-à-dire : à $10^{-3} = 0.001$ près

Et on a : 1.73 est une valeur approchée décimale du réel $\sqrt{3}$ par défaut à 10^{-2} près

1.74 : Est une valeur approchée décimale du réel $\sqrt{3}$ par excès à 10^{-2} près.

Exercice36: (**) Donner une valeur approchée décimale de $\sqrt{10}$ par défaut et par excès à 3×10^{-3} près (Utiliser la calculatrice : $(\sqrt{10} \approx 3.16227766...)$)

Corrigé : On a : $3.162 < \sqrt{10} < 3.165$. Et on a : $3.165 - 3.162 = 0.003 = 3 \times 10^{-3}$

Donc : 3.162 est une valeur approchée décimale du réel $\sqrt{10}$ par défaut à 3×10^{-3} près.

Et 3.165 est une valeur approchée décimale du réel $\sqrt{10}$ par excès à 3×10^{-3} près.

Exercice37: (**) $x \in [1;3]$ et $y \in [2;4]$

et $z \in [-3; -1]$

1) Trouver un encadrement de : x^2 ; y^2 ;

$$2x$$
 $3y$; $-x$; $-y$; $\frac{1}{x}$; $\frac{1}{y}$; $\frac{x}{y}$ et $y \times z$

2) Trouver un encadrement de : $A = x^2 + y^2 + 2x - 3y$ et $B = \frac{2x - 1}{x + 1}$ et trouver les amplitudes des encadrements

Corrigé: 1) $x \in [1;3]$ Signifie que : $1 \le x \le 3$

 $y \in [2;4]$ Signifie que : $2 \le y \le 4$

On a $1 \le x \le 3$ donc $1^2 \le x^2 \le 3^2$

C'est-à-dire : $1 \le x^2 \le 9$

On a $2 \le y \le 4$ donc $2^2 \le y^2 \le 4^2$

C'est-à-dire : $4 \le y^2 \le 16$

On a $1 \le x \le 3$ donc $2 \times 1 \le 2x \le 2 \times 3$

C'est-à-dire : $2 \le 2x \le 6$

On a $2 \le y \le 4$ donc $3 \times 2 \le 3 \times y \le 3 \times 4$

C'est-à-dire: $6 \le 3y \le 12$

On a $1 \le x \le 3$ donc $-3 \le -x \le -1$

On a $2 \le y \le 4$ donc $-4 \le -y \le -2$

On a $1 \le x \le 3$ donc $\frac{1}{3} \le \frac{1}{x} \le 1$

On a $2 \le y \le 4$ donc $\frac{1}{4} \le \frac{1}{y} \le \frac{1}{2}$

On a $\frac{x}{y} = x \times \frac{1}{y}$ donc $1 \times \frac{1}{4} \le x \times \frac{1}{y} \le 3 \times \frac{1}{2}$

C'est-à-dire: $\frac{1}{4} \le \frac{x}{y} \le \frac{3}{2}$

Encadrement de $y \times z$:

On a $2 \le y \le 4$ et $-3 \le z \le -1$

Donc: $2 \le y \le 4$ et $1 \le -z \le 3$

Donc: $2 \times 1 \le y(-z) \le 4 \times 3$

Donc: $2 \le -yz \le 12$ par suite: $-12 \le yz \le -2$

Tronc commun Sciences BIOF

2) Encadrement de $A = x^2 + y^2 + 2x - 3y$ 6 \le 3y \le 12 Donc -12 \le -3y \le -6

On fait la somme membre a membre on trouve :

 $1+4+2-12 \le x^2+y^2+2x-3y \le 9+16+6-6$

Donc ① $-5 \le A \le 25$: ① est un encadrement du réel A à 25 - (-5) = 30 près

Encadrement de : $B = \frac{2x-1}{x+1}$

On a $B = \frac{2x-1}{x+1} = (2x-1) \times \frac{1}{x+1}$ et on a $1 \le x \le 3$

Donc $2 \le 2x \le 6$

Donc: $2-1 \le 2x-1 \le 6-1$ cad: $1 \le 2x-1 \le 5$ **3** Et on $a1 \le x \le 3$ donc $2 \le x+1 \le 4$

Alors: $\frac{1}{4} \le \frac{1}{x+1} \le \frac{1}{2}$ 4.

On fait la produit membre a membre de 3 et 4

On trouve: $1 \times \frac{1}{4} \le (2x-1) \times \frac{1}{x+1} \le 5 \times \frac{1}{2}$

Donc $\frac{1}{4} \le B \le \frac{5}{2}$ est un encadrement du réel *B*

D'amplitudes $r = \frac{5}{2} - \frac{1}{4} = \frac{9}{4}$

Exercice38: (***) $x \in [-3;2]$ et $y \in [-7;1]$ Trouver un encadrement de : x + 2y et 2x - y et -5x + 3y - 8 et xy.

Corrigé: $x \in [-3;2]$ Signifie $-3 \le x \le 2$

et $y \in [-7;1]$ Signifie $-7 \le y \le 1$

Donc: $-7 \times 2 \le 2y \le 1 \times 2$

Par suite: $-7 \times 2 + (-3) \le 2y + x \le 1 \times 2 + 2$

C'est-à-dire : $-17 \le 2y + x \le 4$

On a: $-6 \le 2x \le 4$ et $-1 \le -y \le 7$

Donc $-6-1 \le 2x - y \le 4+7$ cad $-7 \le 2x - y \le 11$

On a: $-3 \le x \le 2$ donc: $-10 \le -5x \le 15$ et on a:

 $-7 \le y \le 1 \text{ donc} : -21 \le 3y \le 3$

Par suite : $-31 \le -5x + 3y \le 18$

Par conséquent : $-23 \le -5x + 3y + 8 \le 26$.

Encadrement de : xy

On a: $-3 \le x \le 2$ et $-7 \le y \le 1$

1ére cas : $-3 \le x \le 0$ et $-7 \le y \le 0$

On a donc : $0 \le -x \le 3$ et $0 \le -y \le 7$

Alors on a: $0 \le (-x) \times (-y) \le 21$

Par suite : $0 \le xy \le 21 (1)$

2ére cas : $-3 \le x \le 0$ et $0 \le y \le 1$ On a donc : $0 \le -x \le 3$ $0 \le y \le 1$

Alors on a: $0 \le (-x) \times y \le 3$

Par suite : $-3 \le xy \le 0$ (2)

3ére cas : $0 \le x \le 2$ et $-7 \le y \le 0$

On a donc: $0 \le x \le 2$ et $0 \le -y \le 7$

Alors on a : $0 \le (-y) \times x \le 14$

Par suite: $-14 \le xy \le 0$ (3)

4ére cas : $0 \le x \le 2$ et $0 \le y \le 1$

Alors on a : $0 \le xy \le 2$ (4)

De: (1); (2); (3) et (4)

En déduit que : $-14 \le xy \le -21$.

Exercice39: (**) 1) Effectuer et calculer :

 $\left(\sqrt{7}-2\sqrt{3}\right)^2.$

2) On pose : $E = \sqrt{19 - 4\sqrt{21}}$

a) Simplifier: E

b) Si on a: $1,73 < \sqrt{3} < 1,74$ et $2,64 < \sqrt{7} < 2,65$

Donner est une valeur approchée du réel E par défaut et excès à 0,5 près.

Corrigé:

1)
$$(\sqrt{7} - 2\sqrt{3})^2 = (\sqrt{7})^2 - 2 \times \sqrt{7} \times 2\sqrt{3} + (2\sqrt{3})^2$$

$$(\sqrt{7} - 2\sqrt{3})^2 = 7 - 4\sqrt{21} + 12 = 19 - 4\sqrt{21}$$

2) a)
$$E = \sqrt{19 - 4\sqrt{21}} = \sqrt{\left(\sqrt{7} - 2\sqrt{3}\right)^2} = \left|\sqrt{7} - 2\sqrt{3}\right|$$

$$E = -\sqrt{7} + 2\sqrt{3} = 2\sqrt{3} - \sqrt{7}$$

car
$$\sqrt{7} - 2\sqrt{3} < 0$$
 $((2\sqrt{3})^2 = 12 \text{ et } (\sqrt{7})^2 = 7)$

b) On a:
$$E = 2\sqrt{3} - \sqrt{7} = 2\sqrt{3} + (-\sqrt{7})$$

Or on a: $1,73 < \sqrt{3} < 1,74$ donc $3,46 < 2\sqrt{3} < 3,48$

Et on a: $2,64 < \sqrt{7} < 2,65$

Donc: $-2,65 < -\sqrt{7} < -2,64$

Par suite: $3,46-2,65 < 2\sqrt{3} - \sqrt{7} < 3,48-2,64$

Ce qui signifie que : 0.81 < A < 0.84

Et puisque : $0.84 - 0.81 = 0.03 = 3 \times 10^{-2}$ alors :

- 0,84 Est une valeur approchée du réel E par excès à 3×10^{-2} près.
- 0,81Est une valeur approchée du réel E par défaut à 3×10^{-2} près.

Exercice40: (**) Soient : $1 \le x \le 3$ et $\frac{1}{2} \le y \le 1$.

On pose : $E = x^2 - y^2 + 2x + 2y$

1) Trouver un encadrement de : ${\cal E}$ et déterminer son amplitude.

Tronc commun Sciences BIOF

2) Vérifier que : E = (x+y)(x-y+2) et en déduire un autre encadrement de E et comparer les amplitudes des deux encadrements.

3) En déduire que : $4 \le E \le 9$.

Corrigé :1) Encadrement de : $E = x^2 - y^2 + x + y$

On a: $1 \le x \le 3$ et $\frac{1}{2} \le y \le 1$ donc: $1 \le x^2 \le 9$ et

 $\frac{1}{4} \le y^2 \le 1$ donc: $-1 \le -y^2 \le -\frac{1}{4}$

Et on a : $2 \le 2x \le 6$ et $1 \le 2y \le 2$

Donc: $1+-1+2+2 \le x^2-y^2+x+y \le 9+\left(-\frac{1}{4}\right)+6+2$

Ce qui signifie que: $4 \le E \le \frac{67}{4} (\alpha)$

Son amplitude est : $\frac{67}{4} - 4 = \frac{51}{4} = 12,75$

2) On a : $E = x^2 - y^2 + 2x + 2y$

Donc: E = (x+y)(x-y)+2(x+y)

Et par suite : E = (x+y)(x-y+2)

Déduction : on a : $1 \le x \le 3$ et $\frac{1}{2} \le y \le 1$.

Donc: $\frac{3}{2} \le x + y \le 4 (1)$

Et on a: $-1 \le -y \le -\frac{1}{2}$ donc: $1-1 \le x-y \le 3-\frac{1}{2}$

Ce qui signifie que: $0 \le x - y \le \frac{5}{2}$

Par suite on a : $2 \le x - y + 2 \le \frac{9}{4} (2)$

De (1) et (2) on déduit que : $3 \le (x+y)(x-y+2) \le 9$

Ce qui signifie que: $3 \le E \le 9(\beta)$ donc c'est un autre encadrement de E

Son amplitude est : 9-3 = 6 < 12,75

3) Déduction : des relations (α) et (β) en déduit

que : $E \in \left[4; \frac{67}{4}\right]$ et $E \in \left[3; 9\right]$

Donc: $E \in \left[4; \frac{67}{4}\right] \cap \left[3; 9\right]$ ce qui signifie que :

 $E \in [4;9]$ c'est-à-dire : $4 \le E \le 9$

Exercice41: (**) 1) Vérifier que $14^2 < 200 < 15^2$ et en déduire que ; $1, 4 < \sqrt{2} < 1, 5$

2) Trouver un encadrement de : $\sqrt{5}$.

3) En déduire un encadrement de : $\sqrt{2} + \sqrt{5}$ et $\sqrt{10}$.

Corrigé :1) On a $14^2 = 196$ et $15^2 = 225$

Donc: $14^2 < 200 < 15^2$

C'est-à-dire : $\sqrt{14^2} < \sqrt{200} < \sqrt{15^2}$

Donc: $\sqrt{14^2} < \sqrt{2 \times 100} < \sqrt{15^2}$

C'est-à-dire : $14 < \sqrt{2} \times 10 < 15$

Donc: $14 \times \frac{1}{10} < \sqrt{2} \times 10 \times \frac{1}{10} < 15 \times \frac{1}{10}$

Cela équivaut à : $1,4 < \sqrt{2} < 1,5$

2) On a $22^2 = 484$ et $23^2 = 529$ donc : $22^2 < 500 < 23^2$

C'est-à-dire : $\sqrt{22^2} < \sqrt{500} < \sqrt{23^2}$.

Donc: $22 < \sqrt{5} \times 10 < 23$

Cela équivaut à : $22 \times \frac{1}{10} < \sqrt{5} \times 10 \times \frac{1}{10} < 23 \times \frac{1}{10}$

Par suite: $2, 2 < \sqrt{5} < 2, 3$

3) On a $1,4 < \sqrt{2} < 1,5$ et $2,2 < \sqrt{5} < 2,3$

Donc: $1,4+2,2<\sqrt{2}+\sqrt{5}<1,5+2,3$.

Donc: $3,6 < \sqrt{2} + \sqrt{5} < 3,8$

On a:1,4 < $\sqrt{2}$ < 1,5 et 2,2 < $\sqrt{5}$ < 2,3

Donc: $1,4\times 2,2 < \sqrt{2} \times \sqrt{5} < 1,5\times 2,3$

Donc $3{,}08 < \sqrt{10} < 3{,}45$

Exercice42: (**) $x \in [-3;1]$ et $y \in [-6;-2]$

Trouver un encadrement de : 1) x+y 2) x-y

3) *x*²

4) y²

5) $x \times y$

6) $\frac{x}{y}$

Corrigé:1) $x \in [-3;1]$ signifie $-3 \le x \le 1$

 $y \in [-6, -2]$ Signifie que : $-6 \le y \le -2$

Donc $(-3)+(-6) \le x+y \le 1+(-2)$

C'est-à-dire : $-9 \le x + y \le -1$

2) On a x - y = x + (-y) et on a $-6 \le y \le -2$

Donc $2 \le -y \le 6$

Donc $(-3)+2 \le x+(-y) \le 1+6$

C'est-à-dire : $-1 \le x - y \le 7$

3) On a $-3 \le x \le 1$ donc $0 \le x \le 1$ ou $-3 \le x \le 0$

Donc $0^2 \le x^2 \le 1^2$ ou $0^2 \le x^2 \le (-3)^2$

Donc $0 \le x^2 \le 1$ ou $0 \le x^2 \le 9$

Par suite : $0 \le x^2 \le 9$

4) On a $-6 \le y \le -2$ donc $(-2)^2 \le y^2 \le (-6)^2$

Par suite: $4 \le y^2 \le 36$

5) Encadrement de : $x \times y$

On a: $-3 \le x \le 1$ et $-6 \le y \le -2$

- Si $0 \le x \le 1$

On a $-6 \le y \le -2$ alors on a: $2 \le -y \le 6$

Donc $0 \le -xy \le 6$ par suite $1 -6 \le xy \le 0$

Tronc commun Sciences BIOF

- Si $-3 \le x \le 0$ alors $0 \le -x \le 3$ et on a $2 \le -y \le 6$ donc (2) $0 \le xy \le 18$

D'après ① et ② on déduit que : $-6 \le xy \le 18$

6) Encadrement de $\frac{x}{y}$: on a $-6 \le y \le -2$

Donc: $-\frac{1}{2} \le \frac{1}{y} \le -\frac{1}{6}$

Donc: $\frac{1}{6} \le -\frac{1}{y} \le \frac{1}{2}$ et $-3 \le x \le 1$

- Si $0 \le x \le 1$: On a $\frac{1}{6} \le -\frac{1}{y} \le \frac{1}{2}$

Alors $0 \le x \times \left(-\frac{1}{y}\right) \le \frac{1}{2}$

Donc $0 \le -\frac{x}{y} \le \frac{1}{2}$ par suite : $3 - \frac{1}{2} \le \frac{x}{y} \le 0$

- Si $-3 \le x \le 0$ alors $0 \le -x \le 3$ et on a

 $\frac{1}{6} \le -\frac{1}{y} \le \frac{1}{2}$ donc $4 \ 0 \le \frac{x}{y} \le \frac{3}{2}$

D'après **3** et **4** on déduit que : $-\frac{1}{2} \le \frac{x}{y} \le \frac{3}{2}$

Exercice43: (**) Sachant que : $1,38 < \sqrt{2} < 1,42$

Montrer que : $|\sqrt{2} - 1,40| < 0,02$

Que peut-on déduire ?

Corrigé : On a : $1,38 < \sqrt{2} < 1,42$

Donc: $-0.02 < \sqrt{2} - 1.40 < 0.02$

Donc: $|\sqrt{2}-1,40| < 0,02$

Donc: 1,40 est une valeur approchée du nombre

 $\sqrt{2}$ à 0,02 près

On a $1,40 \le \sqrt{2} < 1,40+0,02$ donc 1,40 est une valeur approchée par défaut du nombre $\sqrt{2}$ à 0,02 près

On a $1,42-0,02<\sqrt{2}<1,42$ donc 1,42 est une valeur approchée par excès du nombre $\sqrt{2}$ à 0,02 près

Exercice44: (**) Sachant que :

 $2,645 \le \sqrt{7} \le 2,646$

a) Que représente 2,645 pour $\sqrt{7}$?

B) Que représente 2,646 pour $\sqrt{7}$?

Corrigé : a) 2,645 est une valeur approchée du réel $\sqrt{7}$ par défaut à 10^{-3} près

b) 2,645 est une valeur approchée du réel $\sqrt{7}$ par excès à 10^{-3} près

Exercice45: (***) $x \in \mathbb{R}$ et $y \in \mathbb{R}$

Le nombre 1,12 est une valeur approchée décimale du réel x par excès à 10^{-2} près

Le nombre 1,11 est une valeur approchée décimale du réel y par défaut à 10^{-2} près

Montrer que : 1,244 est une valeur approchée du réel xy à 12×10^{-3} près

Corrigé : 1,12 Est une valeur approchée décimale du réel x par excès à 10^{-2} près

Signifie: $1,11 \le x < 1,12$ (1)

1,11 Est une valeur approchée décimale du réel y par défaut à 10^{-2} près signifie : 1,11 $\leq y <$ 1,12 (2)

De (1) et (2) nous déduisons que :

$$(1,11)^2 \le xy < (1,12)^2$$
 d'où: $1,2321 \le xy < 1,2544$

Par suite: $1,2321-1.244 \le xy-1.244 \le 1,2544-1.244$

Cela équivaut à : $-0.012 \le xy - 1.244 \le 0.012$

Cela équivaut à : $|xy-1.244| \le 0,012$

Cela signifie que : 1,244 est une valeur approchée du réel xy à 12×10^{-3} près

Exercice46: (**) 1) Vérifier que : $14^2 < 200 < 15^2$ et en déduire que : $1, 4 < \sqrt{2} < 1, 5$

2) Par la même méthode : donner un encadrement de : $\sqrt{5}$

3) En déduire un encadrement de : $\sqrt{2} + \sqrt{5}$ et $\sqrt{10}$

Corrigé :1) On a : $14^2 = 196$ et $15^2 = 225$

Donc: $14^2 < 200 < 15^2$

On a: $14^2 < 200 < 15^2$ donc: $\sqrt{14^2} < \sqrt{200} < \sqrt{15^2}$

Equivaut à : $\sqrt{14^2} < \sqrt{2 \times 100} < \sqrt{15^2}$

Donc: $14 < \sqrt{2} \times 10 < 15$

Donc: $14 \times \frac{1}{10} < \sqrt{2} \times 10 \times \frac{1}{10} < 15 \times \frac{1}{10}$

Par suite : $1, 4 < \sqrt{2} < 1, 5$

2) On a: $22^2 = 484$ et $23^2 = 529$

Donc: $22^2 < 500 < 23^2$

On a donc: $\sqrt{22^2} < \sqrt{500} < \sqrt{23^2}$

Donc: $22 < \sqrt{5} \times 10 < 23$

Equivaut à : $22 \times \frac{1}{10} < \sqrt{5} \times 10 \times \frac{1}{10} < 23 \times \frac{1}{10}$

Par suite : $2, 2 < \sqrt{5} < 2, 3$

3) On a: $1,4 < \sqrt{2} < 1,5$ et $2,2 < \sqrt{5} < 2,3$

Donc: $1,4+2,2<\sqrt{2}+\sqrt{5}<1,5+2,3$

Equivaut à : $3,6 < \sqrt{2} + \sqrt{5} < 3,8$

Tronc commun Sciences BIOF

On a aussi: $1,4\times 2,2<\sqrt{2}\times\sqrt{5}<1,5\times 2,3$

Par suite: $3,08 < \sqrt{10} < 3,45$

Exercice47: (***) Soient x et y deux réels

tels que : x < y < 3

1) Montrer que : x + y - 6 < 0

2) Comparer $a = x^2 - 6x + 1$ et $b = y^2 - 6y + 1$

Corrigé :1) On a x < y < 3 donc x < 3 et y < 3

Donc: x+y < 6 donc: x+y-6 < 0

2)
$$a-b=(x^2-6x+1)-(y^2-6y+1)$$

$$a-b = x^2 - 6x + 1 - y^2 + 6y - 1 = x^2 - y^2 - 6x + 6y$$

$$a-b=(x-y)(x+y)-6(x-y)=(x-y)(x+y-6)$$

On a: x < y donc $x - y \in \mathbb{R}^-$

Et on a: $x+y-6 \in \mathbb{R}^{-}$

Donc: $(x-y)(x+y-6) \in \mathbb{R}^+$

Donc: $a-b \in \mathbb{R}^+$ et par suite $a \ge b$

Exercice48: (***) On pose

$$B = \sqrt{6 - 2\sqrt{5}} - \sqrt{6 + 2\sqrt{5}}$$

1) Donner le signe de : B

2) Calculer B^2

3) Donner une écriture simplifié de B

Corrigé: $B = \sqrt{6 - 2\sqrt{5}} - \sqrt{6 + 2\sqrt{5}}$

1) On Remarque que : $6 - 2\sqrt{5} < 6 + 2\sqrt{5}$

Donc: $\sqrt{6-2\sqrt{5}} < \sqrt{6+2\sqrt{5}}$

Donc: $\sqrt{6-2\sqrt{5}} - \sqrt{6+2\sqrt{5}} \in \mathbb{R}^{*-} \text{ cad } B < 0$

2)
$$B^2 = \left(\sqrt{6 - 2\sqrt{5}} - \sqrt{6 + 2\sqrt{5}}\right)^2$$

Donc

$$B^{2} = \left(\sqrt{6 - 2\sqrt{5}}\right)^{2} - 2\sqrt{6 - 2\sqrt{5}}\sqrt{6 + 2\sqrt{5}} + \left(\sqrt{6 + 2\sqrt{5}}\right)^{2}$$

Done .

$$B^{2} = 6 - 2\sqrt{5} - 2\sqrt{\left(6 - 2\sqrt{5}\right)\left(6 + 2\sqrt{5}\right)} + 6 + 2\sqrt{5}$$

$$B^2 = 12 - 2\sqrt{6^2 - (2\sqrt{5})^2} = 12 - 2\sqrt{6^2 - 20} = 12 - 2\sqrt{16}$$

Donc: $B^2 = 12 - 2 \times 4 = 4$

3) $B^2 = 4$ Equivaut à : $B = \sqrt{4}$ ou $B = -\sqrt{4}$

Donc: B = 2 ou B = -2 or B < 0

Donc: B = -2

Exercice49: (***) 1) Montrer que:

$$\sqrt{\frac{6+\sqrt{31}}{2}} + \sqrt{\frac{6-\sqrt{31}}{2}} = \sqrt{6+\sqrt{5}}$$

2) Montrer que :

$$\sqrt{9 - \sqrt{79}} + \sqrt{9 + \sqrt{79}} = \sqrt{18 + \sqrt{8}}$$

Corrigé :1) On pose :
$$B = \sqrt{\frac{6 + \sqrt{31}}{2}} + \sqrt{\frac{6 - \sqrt{31}}{2}}$$

On va Calculer B^2 :

$$B^{2} = \left(\sqrt{\frac{6+\sqrt{31}}{2}}\right)^{2} + 2\sqrt{\frac{6+\sqrt{31}}{2}}\sqrt{\frac{6-\sqrt{31}}{2}} + \left(\sqrt{\frac{6-\sqrt{31}}{2}}\right)^{2}$$

$$B^2 = 6 + 2\sqrt{\frac{36 - 1}{4}} = 6 + 2\sqrt{\frac{5}{4}} = 6 + \sqrt{5}$$

$$B^{2} = \frac{6 + \sqrt{31}}{2} + 2\sqrt{\left(\frac{6 + \sqrt{31}}{2}\right)\left(\frac{6 - \sqrt{31}}{2}\right)} + \frac{6 - \sqrt{31}}{2}$$

Donc: $B^2 = 6 + \sqrt{5}$

Donc:
$$B = \sqrt{6 + \sqrt{5}}$$
 ou $B = -\sqrt{6 + \sqrt{5}}$

Or
$$B > 0$$
 donc: $B = \sqrt{6 + \sqrt{5}}$

D'où:
$$\sqrt{\frac{6+\sqrt{31}}{2}} + \sqrt{\frac{6-\sqrt{31}}{2}} = \sqrt{6+\sqrt{5}}$$

2)
$$\sqrt{9-\sqrt{79}} + \sqrt{9+\sqrt{79}} = \sqrt{18+\sqrt{8}}$$
??

On pose:
$$B = \sqrt{9 - \sqrt{79}} + \sqrt{9 + \sqrt{79}}$$

Calculons B^2 ?

$$B^{2} = \left(\sqrt{9 - \sqrt{79}}\right)^{2} + 2\sqrt{9 - \sqrt{79}}\sqrt{9 + \sqrt{79}} + \left(\sqrt{9 + \sqrt{79}}\right)^{2}$$

$$B^2 = 9 - \sqrt{79} + 2\sqrt{(9 - \sqrt{79})(9 + \sqrt{79})} + 9 + \sqrt{79}$$

$$B^2 = 18 + 2\sqrt{81 - 79} = 18 + \sqrt{8}$$

Donc: $B^2 = 18 + \sqrt{8}$

Donc:
$$B = \sqrt{18 + \sqrt{8}}$$
 ou $B = -\sqrt{18 + \sqrt{8}}$

Or B > 0 donc: $B = \sqrt{18 + \sqrt{8}}$

Par suite:
$$\sqrt{9-\sqrt{79}} + \sqrt{9+\sqrt{79}} = \sqrt{18+\sqrt{8}}$$

Exercice 50: (***) soit $a \ge 1$ on pose : $A = \sqrt{1 + \frac{1}{a}}$

1) Montrer que : a(A+1)(A-1)=1

2) a) Montrer que : $2 \le A + 1 \le 3$

b) En déduire que $:1+\frac{1}{3a} \le A \le 1+\frac{1}{2a}$

3) Montrer que : 1,1 est une valeur approchée de

 $\sqrt{1,2}$ a $\frac{1}{30}$ prés

Corrigé:1) $a \ge 1$ et $A = \sqrt{1 + \frac{1}{a}}$

Montrons que : a(A+1)(A-1)=1 ?

Tronc commun Sciences BIOF

On a:
$$(A+1)(A-1) = A^2 - 1 = \left(\sqrt{1+\frac{1}{a}}\right)^2 - 1$$

Donc:
$$(A+1)(A-1)=1+\frac{1}{a}-1=\frac{1}{a}$$

Donc:
$$(A+1)(A-1) = \frac{1}{a}$$
 et par suite :

$$a(A+1)(A-1)=1$$

2) Montrons que :
$$2 \le A + 1 \le 3$$
 ?

On a:
$$a \ge 1 > 0$$
 donc: $\frac{1}{a} \ge 0$ donc: $\frac{1}{a} + 1 \ge 1$

Donc:
$$A \ge 1$$
 donc: $A + 1 \ge 2(1)$

On a:
$$a \ge 1$$
 donc: $\frac{1}{a} \le 1$ alors: $1 + \frac{1}{a} \le 2$

Donc:
$$A \le \sqrt{2}$$
 par suite: $A + 1 \le \sqrt{2} + 1 \le 3(2)$

De (1) et (2) en déduit que :
$$2 \le A+1 \le 3$$

Et on a :
$$a(A+1)(A-1)=1$$
 donc : $A-1=\frac{1}{a(A+1)}$

D'autre part on a :
$$\frac{1}{3} \le \frac{1}{A+1} \le \frac{1}{2}$$
 donc : $\frac{1}{3a} \le \frac{1}{a(A+1)} \le \frac{1}{2a}$

Donc:
$$\frac{1}{3a} \le A - 1 \le \frac{1}{2a}$$

Donc:
$$\frac{1}{3a} + 1 \le A \le \frac{1}{2a} + 1$$

3) On a 1, 2 = 1 + 0, 2 = 1 +
$$\frac{1}{5}$$
 donc $A = \sqrt{1, 2} = \sqrt{1 + \frac{1}{5}}$

par suite : a = 5

$$\frac{1}{15} + 1 \le \sqrt{1,2} \le \frac{1}{10} + 1$$
 Equivaut à : $\frac{16}{15} \le \sqrt{1,2} \le \frac{11}{10}$

Signifie que :
$$\frac{32}{30} \le \sqrt{1,2} \le \frac{33}{30}$$
 et on a $\frac{33}{30} - \frac{32}{30} = \frac{1}{30}$

$$\left(\frac{33}{30} = 1,1\right)$$

Donc : 1,1 est une valeur approchée de $\sqrt{1,2}$ a $\frac{1}{30}$ prés

Exercice51: (***) 1) a) Vérifier que pour tout

$$x \in \mathbb{R} - \{1\} \text{ on a} : \frac{1}{1-x} = 1 + x + \frac{x^2}{1-x}$$

b) En déduire que :

si
$$|x| \le \frac{1}{2}$$
 alors $\left| \frac{1}{1-x} - (1+x) \right| \le 2x^2$

2) Donner une valeur approchée du nombre :

$$\frac{1}{0.99}$$
 à 2×10⁻⁴ près

Corrigé: 1) a) Soit : $x \in \mathbb{R} - \{1\}$;

$$1 + x + \frac{x^2}{1 - x} = \frac{(1 + x)(1 - x) + x^2}{1 - x} = \frac{1^2 - x^2 + x^2}{1 - x} = \frac{1}{1 - x}$$

b) Soit : $x \in \mathbb{R} - \{1\}$ tel que : $|x| \le \frac{1}{2}$

On a:
$$\frac{1}{1-x} = 1 + x + \frac{x^2}{1-x}$$

Donc:
$$\frac{1}{1-x} - (1+x) = \frac{x^2}{1-x}$$

Donc:
$$\left| \frac{1}{1-x} - \left(1+x\right) \right| = \left| \frac{x^2}{1-x} \right|$$

C'est-à-dire :
$$\left| \frac{1}{1-x} - (1+x) \right| = \frac{x^2}{|1-x|} \left(1 \right)$$

 $Car: x^2 \ge 0$

On a:
$$|x| \le \frac{1}{2}$$
 Donc: $-\frac{1}{2} \le x \le \frac{1}{2}$

C'est-à-dire :
$$-\frac{1}{2} \le -x \le \frac{1}{2}$$

Donc:
$$1 - \frac{1}{2} \le 1 - x \le 1 + \frac{1}{2}$$
 c'est-à-dire $\frac{1}{2} \le 1 - x \le \frac{3}{2}$

Et par suite :
$$\frac{2}{3} \le \frac{1}{1-x} \le 2$$
 donc : $-2 \le \frac{2}{3} \le \frac{1}{1-x} \le 2$

Par suite:
$$\frac{1}{|1-x|} \le 2$$
 et puisque: $x^2 \ge 0$

Alors:
$$\frac{x^2}{|1-x|} \le 2x^2$$
 et d'après l'égalité (1)

On a donc:
$$\left| \frac{1}{1-x} - (1+x) \right| \le 2x^2$$

2) Déterminons une valeur approchée du nombre :

$$\frac{1}{0.99}$$
 à 2×10^{-4} près ???

D'après 1)b) on donne à x la valeur : $x = 10^{-2}$

et puisque
$$\left|10^{-2}\right| \le \frac{1}{2}$$

Alors:
$$\left| \frac{1}{1-10^{-2}} - \left(1+10^{-2}\right) \right| \le 2 \times \left(10^{-2}\right)^2$$

C'est-à-dire on a :
$$\left| \frac{1}{1-0.01} - (1+0.01) \right| \le 2 \times 10^{-4}$$

Donc:
$$\left| \frac{1}{0.99} - 1.01 \right| \le 2 \times 10^{-4}$$
 et par suite : 1,01 est

une valeur approchée du nombre : $\frac{1}{0.99}$ à

$$2 \times 10^{-4}$$
 près

Tronc commun Sciences BIOF

Exercice52: (***) Soient a et b deux réels tel que : $a \in [0;2]$ et $b \in [0;2]$

1) Montrer que :
$$\frac{3}{16}|a-b| \le \left| \frac{3}{2+a} - \frac{3}{2+b} \right| \le \frac{3}{4}|a-b|$$

2) Sachant que :
$$0.866 \le \frac{\sqrt{3}}{2} \le 0.867$$

et
$$0.707 \le \frac{\sqrt{2}}{2} \le 0.708$$

Donner une valeur approchée du réel $\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}$

Par défaut et excès à 2×10^{-3} près

3) En déduire que :
$$\left| \frac{3}{2 + \frac{\sqrt{3}}{2}} - \frac{3}{2 + \frac{\sqrt{2}}{2}} \right| \le 1,2 \times 10^{-1}$$

Corrigé :1)

$$\left| \frac{3}{2+a} - \frac{3}{2+b} \right| = \left| \frac{3(2+b) - 3(2+a)}{(2+b)(2+a)} \right| = \left| \frac{6+3b-6-3a}{(2+b)(2+a)} \right|$$

Donc:
$$\left| \frac{3}{2+a} - \frac{3}{2+b} \right| = \left| \frac{3b-3a}{(2+b)(2+a)} \right| = \left| \frac{3(b-a)}{(2+b)(2+a)} \right|$$

Donc

$$\left| \frac{3}{2+a} - \frac{3}{2+b} \right| = \frac{|3||b-a|}{|(2+b)(2+a)|} = \frac{3|a-b|}{|(2+b)(2+a)|}$$

Car:
$$|b-a| = |a-b|$$

Or on a : $a \in [0,2]$ signifie $0 \le a \le 2$

Et on a : $b \in [0;2]$ signifie $0 \le b \le 2$

Donc: $2 \le 2 + a \le 4$ et $2 \le 2 + b \le 4$

Par suite: $4 \le (2+b)(2+a) \le 16$

C'est-à-dire :
$$|(2+b)(2+a)| = (2+b)(2+a)$$

Et on a aussi :
$$\frac{1}{16} \le \frac{1}{(2+b)(2+a)} \le \frac{1}{4}$$

Donc:
$$\frac{3|a-b|}{16} \le \frac{3|a-b|}{(2+b)(2+a)} \le \frac{3|a-b|}{4}$$

 $\operatorname{car}: 3|a-b| \ge 0$

Par suite :
$$\frac{3}{16}|a-b| \le \left| \frac{3}{2+a} - \frac{3}{2+b} \right| \le \frac{3}{4}|a-b|$$

2) On a:
$$0.866 \le \frac{\sqrt{3}}{2} \le 0.867$$
 et $0.707 \le \frac{\sqrt{2}}{2} \le 0.708$

On a
$$\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} = \frac{\sqrt{3}}{2} + \left(-\frac{\sqrt{2}}{2}\right)$$

Et on a:
$$-0.708 \le -\frac{\sqrt{2}}{2} \le -0.707$$

Donc: $0.866 - 0.708 \le \frac{\sqrt{3}}{2} + \left(-\frac{\sqrt{2}}{2}\right) \le 0.867 - 0.707$

Donc: $0.158 \le \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \le 0.16$ et $0.16 - 0.158 = 2 \times 10^{-3}$

Par suite : 0,16 est une valeur approchée du réel

 $\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \text{ par excès à : } 2 \times 10^{-3} \text{ près}$

0,158 : Est une valeur approchée du réel $\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}$

par défaut à : 2×10^{-3} près

3) D'après 1) on a $\left| \frac{3}{2+a} - \frac{3}{2+b} \right| \le \frac{3}{4} |a-b|$

Donc: $\left| \frac{3}{2 + \frac{\sqrt{3}}{2}} - \frac{3}{2 + \frac{\sqrt{2}}{2}} \right| \le \frac{3}{4} \left| \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \right|$

Et on a: $0.158 \le \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \le 0.16$

Donc: $0 \le \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \le 0.16$

Par suite : $\frac{3}{4} \left| \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \right| \le \frac{3}{4} \times 0.16 = 0.12$

Finalement : $\left| \frac{3}{2 + \frac{\sqrt{3}}{2}} - \frac{3}{2 + \frac{\sqrt{2}}{2}} \right| \le 0.12$

C'est-à-dire : $\frac{3}{2 + \frac{\sqrt{3}}{2}} - \frac{3}{2 + \frac{\sqrt{2}}{2}} \le 1, 2 \times 10^{-1}$

Exercice53: (***) Soient a et b et c des nombres réels positifs.

Montrer que : $(a+b)(b+c)(a+c) \ge 8abc$

Corrigé Soient a et b et c des nombres réels

positifs. On a : $\left(\sqrt{a} - \sqrt{b}\right)^2 \ge 0$

Donc: $\left(\sqrt{a}\right)^2 - 2\sqrt{a}\sqrt{b} + \left(\sqrt{b}\right)^2 \ge 0$

Donc: $a+b-2\sqrt{ab} \ge 0$

C'est-à-dire : $a+b \ge 2\sqrt{ab}$. (1)

De même on a : $b+c \ge 2\sqrt{bc}$. (2)

De même on a : $a+c \ge 2\sqrt{ac}$. (3)

Par suite : $(1)\times(2)\times(3)$ donne :

 $(a+b)\times(b+c)\times(a+c) \ge 2\sqrt{bc}\times 2\times\sqrt{ab}\times 2\sqrt{ac}$

Donc: $(a+b)\times(b+c)\times(a+c) \ge 8\sqrt{abbcac}$

Tronc commun Sciences BIOF

C'est-à-dire: $(a+b)\times(b+c)\times(a+c)\geq 8\sqrt{a^2b^2c^2}$

Donc: $(a+b)\times(b+c)\times(a+c)\geq 8|abc|$

Et puisque : $abc \ge 0$.

Alors: $(a+b)(b+c)(a+c) \ge 8abc$

Exercice54: (***) Soit a, b, c trois nombres réels.

1) Démontrer que $a \times b \le \frac{a^2 + b^2}{2}$

2) Démontrer que $ab + ac + bc \le a^2 + b^2 + c^2$

3) Démontrer que : $3ab+3ac+3bc \le (a+b+c)^2$

Corrigé:1) Il suffit de se rappeler que:

$$(a-b)^2 = a^2 - 2ab + b^2 \ge 0$$

Ceci donne immédiatement le résultat.

2) On applique trois fois la question précédente :

$$a \times b \le \frac{a^2 + b^2}{2}$$
 et $a \times c \le \frac{a^2 + c^2}{2}$ et $b \times c \le \frac{b^2 + c^2}{2}$

En sommant ces trois inégalités, on obtient bien l'inégalité demandée.

On développe $(a+b+c)^2$ en l'écrivant $((a+b)+c)^2$, puis en redéveloppant le carré.

On trouve : $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$

En utilisant le résultat de la question précédente, $ab+ac+bc \le a^2+b^2+c^2$, on obtient exactement le résultat demandé.

Exercice55: (***) Montrer que lorsqu'on renverse l'ordre des chiffres d'un nombre de deux chiffres, la valeur de ce nombre augmente ou diminue de 9 fois la différence de ces deux chiffres.

Corrigé : Soient x le chiffre des dizaines et y le chiffre des unités

Donc Le nombre initial est : 10x + y.

Le nombre renversé est : 10y + x.

Si : x > y, on écrit la différence des deux nombres ainsi :(10 x + y) - (10 y + x)

$$= 10x + y - 10y - x$$

= $9x - 9y = 9(x - y)$

Si: x < y, on a la différence: (10y + x) - (10x + y) = 9y - 9x = 9(y - x)

Lorsqu'on renverse l'ordre des chiffres d'un nombre, la valeur de ce nombre augmente bien ou diminue bien de 9 fois la différence des deux chiffres.