PROF: ATMANI NAJIB

1ère année bac Lettres et sciences humaines BIOF

http://www.xriadiat.com/

Série d'exercices avec solutions : FONCTIONS - Généralités

Présentation globale

- 1) Domaine de définitions.
- 2) Fonctions paires et Fonctions impaires et interprétations s géométriques
- 3) Fonctions majorées ; minorées ; bornée
- 4) comparer deux fonctions et interprétations géométriques
- 5) Les variations d'une fonction numérique
- 6) Les extremums d'une fonction numérique

Exercice1: Soit la fonction f définie par, $f(x) = 3x^2 - 1$

Calculer l'image de 1 et $\sqrt{2}$ et -1 par f. **Solution :** $f(1) = 3 \times 1^2 - 1 = 3 - 1 = 2$ et $f(\sqrt{2}) = 3 \times (\sqrt{2})^2 - 1 = 6 - 1 = 4$

$$f(-1) = 3 \times (-1)^2 - 1 = 3 - 1 = 2$$

Exercice2: On considère la fonction définie par : $f(x) = \frac{1}{x-2}$

Parmi les valeurs suivantes, laquelle/lesquelles n'a/ont pas d'image par f? 0; 2; -3; 3.

Solution : 1) $f(0) = \frac{1}{0-3} = -\frac{1}{3}$ donc 0 aune image par f c'est : $-\frac{1}{3}$

 $f(2) = \frac{1}{2} = -1$ Donc 2 a une image par f c'est: -1

 $f(-3) = \frac{1}{3-3} = -\frac{1}{6}$ Donc -3 a une image par f c'est : $-\frac{1}{6}$

 $f(3) = \frac{1}{3-3} = \frac{1}{0}$!!!!!??? Mais $\frac{1}{0}$ n'existe pas en math donc 3 n'a pas d'images par f

Exercice3 : Déterminer l'ensemble de définition des fonctions suivantes définie par :

1)
$$f(x) = 2x + 1$$
. 2) $g(x) = 3x^2 - x + 1$ 3) $h(x) = \frac{3}{x}$

4)
$$M(x) = \frac{3}{2x - 4}$$
. 5) $N(x) = \frac{2x^4}{x^2 - 4}$. 6) $K(x) = \frac{7x - 1}{x^3 - 2x}$.

Solution : 1) f(x) = 2x + 1 Un réel a toujours une image.

Donc $D_f = \mathbb{R}$

2) $g(x) = 3x^2 - x + 1$ Un réel a toujours une image.

Donc $D_{\scriptscriptstyle o}=\mathbb{R}$

3) $h(x) = \frac{3}{x}$ Pour les fonctions du type fractions rationnelles, l'ensemble de définition est l'ensemble

des nombres pour lesquels le dénominateur est non nul. : $D_h = \{x \in \mathbb{R} \mid x \neq 0\}$

Donc $D_h = \mathbb{R} - \{0\} = \mathbb{R}^*$

On dira aussi que 0 est une valeur interdite pour la fonction h

4) $M(x) = \frac{x^3}{2x - 4}$. Pour les fonctions du type fractions rationnelles, l'ensemble de définition est

l'ensemble des nombres pour lesquels le dénominateur est non nul. : $D_M = \{x \in \mathbb{R} \mid 2x - 4 \neq 0\}$

$$2x-4=0$$
 ssi $x=\frac{4}{2}=2$ Donc $D_M=\mathbb{R}-\{2\}$

On dira aussi que 2est une valeur interdite pour la fonction M

5)
$$N(x) = \frac{2x^4}{x^2 - 4}$$
. $D_N = \{x \in \mathbb{R} / x^2 - 4 \neq 0\}$

$$x^2 - 4 = 0$$
 Signifie $x^2 - 2^2 = 0$
Signifie $(x-2)(x+2) = 0$

Signifie
$$x-2=0$$
 ou $x+2=0$ Signifie $x=2$ ou $x=-2$

Donc $D_N = \mathbb{R} - \{-2, 2\}$

6)
$$K(x) = \frac{7x-1}{x^3-2x}$$
. $D_K = \{x \in \mathbb{R} / x^3 - 2x \neq 0\}$

$$x^3-2x=0$$
 Signifie $x(x^2-2)=0$ Signifie $x=0$ ou $x^2-2=0$

Signifie
$$x = 0$$
 ou $x^2 = 2$ Signifie $x = 0$ ou $x = \sqrt{2}$ ou $x = -\sqrt{2}$

Donc:
$$D_K = \mathbb{R} - \{-\sqrt{2}; 0; \sqrt{2}\}$$

Exercice4: Soit f une fonction définie par : $f(x) = 3x^2 - 5$

- 1) Déterminer le domaine de définition de f
- 2) Montrer que f est une fonction paire
- 3) Donner une interprétation géométrique (la courbe représentative de f)

Solution :1) f est une fonction polynôme : Donc $D_f = \mathbb{R}$

2)

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = 3(-x)^2 - 5 = 3x^2 - 5$$
$$f(-x) = f(x)$$

Donc f est une fonction paire,

3) la courbe représentative d'une fonction paire est symétrique par à l'axe des ordonnées.

Exercice5: Soit g une fonction définie par : $g(x) = \frac{3}{x}$

- 1) Déterminer le domaine de définition de q
- 2) Montrer que g est une fonction impaire
- 3) Donner une interprétation géométrique (la courbe représentative de f)

Solution :1) On a $g(x) \in \mathbb{R}$ si et seulement si : $x \neq 0$

$$\mathsf{Donc}:\,D_{g}=\mathbb{R}^{*}$$

2)

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$g(-x) = \frac{3}{-x} = -\frac{3}{x}$$
$$g(-x) = -g(x)$$

Donc g est une fonction impaire,

3) la courbe représentative d'une fonction impaire est symétrique par rapport à l'origine.

Exercice6 : Etudier la parité des fonctions suivantes :

1)
$$f(x) = \frac{x^2 - 1}{x}$$
. 2) $f(x) = x^2 + \frac{1}{x}$. 3) $f(x) = \frac{2x^3}{x^2 + 5}$

Solution : 1) $f(x) = \frac{x^2 - 1}{x}$ on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_f = \mathbb{R}^*$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = \frac{(-x)^2 - 1}{-x} = -\frac{x^2 - 1}{x}$$

$$f\left(-x\right) = -f\left(x\right)$$

Donc f est une fonction impaire,

2)
$$f(x) = x^2 + \frac{1}{x}$$
 on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$

Donc $D_{\scriptscriptstyle f} = \mathbb{R}^*$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = (-x)^{2} + \frac{1}{-x} = x^{2} - \frac{1}{x} = \left(-x^{2} + \frac{1}{x}\right)$$

$$f(-x) \neq -f(x)$$

Donc f est une fonction ni paire ni impaire,

3)
$$f(x) = \frac{2x^3}{x^2 + 5}$$
.

$$D_f = \left\{ x \in \mathbb{R} / x^2 + 5 \neq 0 \right\}$$

$$x^2 + 5 = 0$$
 ssi $x^2 = -5$ pas de solutions

Donc
$$D_f = \mathbb{R}$$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = \frac{2(-x)^3}{(-x)^2 + 5} = \frac{-2x^3}{x^2 + 5}$$

$$f(-x) = -f(x)$$

Donc f est une fonction impaire

Exercice7: Soit f une fonction tel que : f(x) = 7x - 5

Montrer que f est strictement croissante sur $\ensuremath{\mathbb{R}}$

Solution: f est une fonction polynôme donc $D_f = \mathbb{R}$

Soit $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tels que : $x_1 \prec x_2$

Donc
$$7x_1 \prec 7x_2$$
 car $7 \succ 0$

Donc
$$7x_1 - 5 < 7x_2 - 5$$

Alors $f(x_1) \prec f(x_2)$ d'où f est strictement croissante sur \mathbb{R}

Exercice8: Soit f une fonction tel que : g(x) = -2x + 3

Montrer que f est strictement décroissante sur ${\mathbb R}$

Solution :

Soit
$$x_1 \in \mathbb{R}$$
 et $x_2 \in \mathbb{R}$ tels que : $x_1 \prec x_2$

Donc
$$-2x_1 \succ -2x_2$$
 car $-2 \prec 0$

Donc
$$-2x_1 + 3 > -2x_2 + 3$$

Alors $g\left(x_{1}\right)\succ g\left(x_{2}\right)$ d'où g est strictement décroissante sur \mathbb{R}

Exercice9: Soit f une fonction tel que : $g(x) = \frac{2}{x}$

- 1) Déterminer le domaine de définition de g
- 2) Montrer que g est strictement décroissante sur $[0; +\infty]$
- 3) Montre que g est strictement décroissante sur $]-\infty;0]$
- 4) Donner le tableau de variation de g

Solution:

1)
$$g(x) \in \mathbb{R}$$
 ssi $x \neq 0$

$$\mathsf{Donc}\,D_g = \mathbb{R} - \{0\} = \mathbb{R}^*$$

2) Soient
$$x_1 \in [0; +\infty[$$
 et $x_2 \in [0; +\infty[$ tel que $x_1 \prec x_2$

Donc
$$\frac{1}{x_1} \succ \frac{1}{x_2}$$
 Donc $\frac{2}{x_1} \succ \frac{2}{x_2}$ car $2 \succ 0$

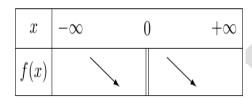
Alors $g(x_1) \succ g(x_2)$ d'où g que est strictement décroissante sur $[0; +\infty[$

3) Soit
$$x_1 \in]-\infty;0]$$
 et $x_2 \in]-\infty;0]$ tel que $x_1 \prec x_2$

Donc
$$\frac{1}{x_1} > \frac{1}{x_2} > \frac{2}{x_1} > \frac{2}{x_2}$$
 car $2 > 0$

Alors $g(x_1) \succ g(x_2)$ d'où g est strictement décroissante sur $]-\infty;0]$

4) tableau de variation :



Exercice10: Soit f une fonction tell que : $f(x) = 3x^2 + 2$

- 1) Déterminer le domaine de définition de f
- 2) Montrer que le taux d'accroissement (taux de variation) de la fonction f entre x_1 et x_2

Est:
$$T(x_1;x_2) = 3(x_1+x_2)$$

- 3) Montrer que : f est croissante sur $[0; +\infty]$
- 4) Montrer que : f est décroissante sur $]-\infty;0]$
- 5) Donner le tableau de variation de f

Solution :1) f Est une fonction polynôme donc $D_f = \mathbb{R}$

2) Soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tel que $x_1 \neq x_2$

$$T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{(3x_1^2 + 2) - (3x_2^2 + 2)}{x_1 - x_2}$$

$$T(x_1; x_2) = \frac{3x_1^2 - 3x_2^2 + 2 - 2}{x_1 - x_2} = \frac{3(x_1^2 - x_2^2)}{x_1 - x_2}$$

$$T(x_1; x_2) = \frac{3(x_1 - x_2)(x_1 + x_2)}{x_1 - x_2} = 3(x_1 + x_2)$$

3) on a:
$$T(x_1; x_2) = 3(x_1 + x_2)$$

Soit
$$x_1 \in [0; +\infty[$$
 et $x_2 \in [0; +\infty[$

Donc
$$x_1 \ge 0$$
 et $x_2 \ge 0$ Donc $x_1 + x_2 \ge 0$

Donc
$$3(x_1+x_2) \ge 0$$
 car $3 > 0$

Donc
$$T(x_1; x_2) = 3(x_1 + x_2) \ge 0$$
 D'où f est croissante sur $[0; +\infty]$

4)Soit
$$x_1 \in]-\infty;0]$$
 et $x_2 \in]-\infty;0]$

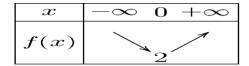
Donc
$$x_1 \le 0$$
 et $x_2 \le 0$ Donc $x_1 + x_2 \le 0$

Donc
$$3(x_1+x_2) \le 0$$
 car $3 > 0$

Donc
$$T(x_1; x_2) = 3(x_1 + x_2) \le 0$$

D'où f est décroissante sur $]-\infty;0]$

5) Résumé: tableau de variation: $f(0) = 3 \times 0^2 + 2 = 2$



Exercice11: Les fonction f et g définies respectivement par :

$$f(x) = x^2 + 1$$
 et $g(x) = \frac{1}{x}$

Sont-elles égales ?

Solution : Déterminons leur ensemble de définition :

f est une fonction polynôme donc $D_f = \mathbb{R}$ et $D_g = \mathbb{R}^*$

On a donc $D_f \neq D_g$. Les fonctions ne sont donc pas égales. On écrit : $f \neq g$

Exercice12: Soient f et g les fonctions numériques tels que : f(x) = x+1 et $g(x) = x^2 + x + 2$

- 1) Déterminer leur ensemble de définition :
- 2) Comparer les fonctions f et g
- 3) Donner une interprétation géométrique du résultat

Solution : 1) $D_f = D_g = \mathbb{R}$ car des fonctions polynômes

2)
$$g(x)-f(x) = x^2 + x + 2 - (x+1) = x^2 + 1 > 0 \ \forall x \in \mathbb{R}$$

Donc: $f(x) \prec g(x) \quad \forall x \in \mathbb{R} \text{ donc } f \prec g$

3) La courbe $\left(C_{_g}
ight)$ de la fonction g est au-dessus de la courbe $\left(C_{_f}
ight)$ de f sur l'intervalle $\mathbb R$

Exercice13: Soient f et g les fonctions numériques tels que : $f(x) = x^2 + 1$ et $g(x) = x^2$

- 1) Déterminer leur ensemble de définition :
- 2) Comparer les fonctions f et g
- 3) Donner une interprétation géométrique du résultat

Solution: 1) $D_f = D_g = \mathbb{R}$ car des fonctions polynômes

2)
$$g(x)-f(x) = x^2 - (x^2 + 1) = -1 < 0 \ \forall x \in \mathbb{R}$$

Donc:
$$g(x) \prec f(x) \quad \forall x \in \mathbb{R} \text{ donc } g \prec f$$

3) La courbe (C_f) de la fonction f est au-dessus de (C_g) La courbe de g sur l'intervalle $\mathbb R$

Exercice14: Soit f une fonction numérique définie sur \mathbb{R} par : $f(x) = -x^2 + 2$

Démontrer que f est majorée par 2 sur $\mathbb R$.

Solution :
$$f(x)-2=-x^2+2-2=-x^2 \le 0$$

Donc
$$f(x) \le 2 \quad \forall x \in \mathbb{R}$$

La fonction f est donc majorée sur \mathbb{R} par M=2

Exercice15: Soit f une fonction numérique définie sur \mathbb{R} par : $f(x) = x^2 + 1$

Démontrer que f est minoré par 1 sur $\mathbb R$.

Solution:
$$f(x)-1=x^2+1-1=x^2 \ge 0$$

Donc
$$1 \le f(x) \quad \forall x \in \mathbb{R}$$

La fonction f est donc minorée sur \mathbb{R} par m=1

Exercice16: Soit f une fonction numérique tel que : $f(x) = \frac{1}{x^2 + 1}$

- 1)Déterminer D_f
- 2) Démontrer que f est majorée sur $\mathbb R$.
- 3) Démontrer que f est minorée sur $\mathbb R$. Conclure

Solution :1)
$$D_f = \{x \in \mathbb{R} / x^2 + 1 \neq 0\}$$

$$x^2 + 1 = 0 \Leftrightarrow x^2 = -1$$
 pas de solution dans \mathbb{R}

Donc :
$$D_f = \mathbb{R}$$

2) On a
$$\forall x \in \mathbb{R}$$
 $x^2 \ge 0$ donc $x^2 + 1 \ge 0 + 1$

Donc
$$x^2 + 1 \ge 1$$
 donc $\frac{1}{x^2 + 1} \le 1$

Donc:
$$f(x) \le 1$$
 par suite f est donc majorée sur \mathbb{R} par $M = 1$

2) On a
$$\forall x \in \mathbb{R}$$
 $x^2 \ge 0$ donc $x^2 + 1 \ge 0 + 1$

Donc
$$x^2 + 1 \ge 1$$
 donc $x^2 + 1 \ge 0$

$$\mathsf{Donc}: \, 0 \! \prec \! f\left(x\right)$$

Par suite f est donc minorée sur
$$\mathbb{R}$$
 par $m=0$

Conclusion:
$$0 \le f(x) \le 1 \quad \forall x \in \mathbb{R}$$

$$\boldsymbol{f}$$
 est donc bornée sur $\ensuremath{\mathbb{R}}$.

Exercice17: Soit f une fonction numérique tel que :
$$f(x) = 5x^2 + 3$$

- 1) Calculer : f(0)
- 2) Montrer que pour tout $x \in \mathbb{R}$: $f(0) \le f(x)$
- 3) En déduire que : f(0) est un minimum absolu de f sur \mathbb{R}

Solution: $f(x) = 5x^2 + 3$ $D_f = \mathbb{R}$

1)
$$f(0) = 5 \times 0^2 + 3 = 3$$

2)
$$f(x)-f(0)=5x^2+3-3=5x^2 \ge 0$$

Donc pour tout $x \in \mathbb{R}$ $f(0) \le f(x)$

3) On a:
$$\forall x \in \mathbb{R} \ f(0) \le f(x)$$

D'où f(0)=3 est un minimum absolu de f sur \mathbb{R}

Exercice18: Soit g une fonction numérique tel que : $g(x) = -4x^2 + 1$

1) Calculer:
$$g(0)$$

2) Montrer que pour tout
$$x \in \mathbb{R}$$
: $g(x) \le g(0)$

3) En déduire que :
$$g(0)$$
 est un maximum absolu de f sur \mathbb{R}

Solution: $g(x) = -4x^2 + 1$ $D_g = \mathbb{R}$

1)
$$g(0) = -4 \times 0^2 + 1 = 1$$

2)
$$g(x)-g(0)=-4x^2+1-1=-4x^2 \le 0$$

Donc pour tout $x \in \mathbb{R}$ $g(x) \le g(0)$

3) On a:
$$\forall x \in \mathbb{R} \ g(x) \leq g(0)$$

D'où g(0)=1 est un maximum absolu de g sur \mathbb{R}

Exercice19: Soit f une fonction numérique tel que : $f(x) = -4x^2 + 4x + 5$

1°a) Montrer que :
$$f(x) = 6 - (2x - 1)^2$$
 pour tout $x \in \mathbb{R}$

b) Montrer que :
$$f(x) \le 6$$
 pour tout $x \in \mathbb{R}$

2) calculer :
$$f\left(\frac{1}{2}\right)$$
 et en déduire les extrémums de f sur $\mathbb R$

Solution: 1) a) on a $D_f = \mathbb{R}$

$$6-(2x-1)^2=6-(4x^2-4x+1)$$

$$=6-4x^2+4x-1=-4x^2+4x+5$$

Donc:
$$f(x) = 6 - (2x - 1)^2$$

b) Donc pour tout
$$x \in \mathbb{R}$$
 on a $(2x-1)^2 \ge 0$

Par suite
$$-(2x-1)^2 \le 0$$
 donc $6-(2x-1)^2 \le 6$

Donc pour tout $x \in \mathbb{R}$ $f(x) \le 6$

2) On a:
$$f\left(\frac{1}{2}\right) = 6 - \left(2 \times \frac{1}{2} - 1\right)^2 = 6 - \left(1 - 1\right)^2 = 6$$

On a pour tout
$$x \in \mathbb{R}$$
: $6 - (2x - 1)^2 \le 6$ alors $f(x) \le f(\frac{1}{2})$

Donc
$$f\left(\frac{1}{2}\right) = 6$$
 est un maximum de f sur \mathbb{R}

Exercice20 : Du tableau de variation on a :

х	-5	-2	2	5
f(x)	5 🔪	0,5	2	-2

Donner une valeur maximale et Minimale de f

Solution : Le nombre 2 est une valeur maximale de f au point $x_0 = 2$

Le nombre 0.5 est une valeur Minimale de f au point $x_0 = -2$

Exercice21: Soit f une fonction définie par : $f(x) = \frac{2x}{x^2 - 9}$

- 1) Déterminer le domaine de définition de f
- 2) Montrer que f est une fonction impaire
- 3) Donner une interprétation géométrique (la courbe représentative de f)

Solution :1): $D_f = \{x \in \mathbb{R} / x^2 - 9 \neq 0\}$

$$x^{2} - 9 = 0 \Leftrightarrow x^{2} - 3^{2} = 0 \Leftrightarrow (x - 3)(x + 3) = 0 \Leftrightarrow x - 3 = 0 \text{ ou } x + 3 = 0$$

$$\Leftrightarrow x = 3ou \ x = -3$$

 $\mathsf{Donc}\ D_f = \mathbb{R} - \{-3, 3\}$

2)

- Pour tout réel x, si $x \in \mathbb{R} - \{-3, 3\}$, alors $-x \in \mathbb{R} - \{-3, 3\}$

$$f(-x) = \frac{2(-x)}{(-x)^2 - 9} = -\frac{2x}{x^2 - 9}$$

$$f(-x) = -f(x)$$

Donc f est une fonction impaire,

- 3) $O\left(0;0\right)$ est un centre de symétrique par à la courbe représentative
 - « C'est en forgeant que l'on devient forgeron » Dit un proverbe C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien