PROF: ATMANI NAJIB

1ère année bac Lettres et sciences humaines BIOF LOGIQUE ET RAISONNEMENTS

http://www.xriadiat.com/

Serie1: LOGIQUE ET RAISONNEMENTS

Exercice1 : Donner la valeur de vérité et la négation de chacune des propositions suivantes

$$1) P''\left(\sqrt{3} \ge 1\right)$$

$$2) \quad Q \,"\left(\frac{1}{2} \in \mathbb{N}\right)$$

2)
$$Q''\left(\frac{1}{2} \in \mathbb{N}\right)$$
 3) $R''(2 \ge 1 \ et \ -1 \le 1)$ "

4)
$$M'' \left(\sqrt{3} \ge 1 \text{ ou } \frac{1}{4} \in \mathbb{N} \right)''$$
 5) $N'' \left(2 \ge 1 \text{ et } \left(-2 \right)^2 = -4 \right)''$

5)
$$N''(2 \ge 1 \text{ et } (-2)^2 = -4)$$
"

Exercice2 : Donner la valeur de vérité des propositions suivantes

1)
$$P "6 \text{ est divisible par 3 et } -1 \notin \mathbb{N}"$$
 2) $Q "\frac{1}{2} \in \mathbb{N} \text{ ou } (-1)^4 = -1"$ 3) $R "1 + 2 = 4" \Rightarrow "\sqrt{2} = -1"$

2)
$$Q''\frac{1}{2} \in \mathbb{N} \ ou(-1)^4 = -1'$$

3)
$$R''1+2=4" \Rightarrow "\sqrt{2}=-1"$$

Exercice3 : Donner la valeur de vérité et la négation de chacune des propositions suivantes

1)
$$P''(2 \ge 1 \quad et \quad -1 \in \mathbb{N})$$
"

1)
$$P''(2 \ge 1 \quad et \quad -1 \in \mathbb{N})$$
" 2) $Q''(\sqrt{3} \ge 2 \quad ou \quad \sqrt{2} \notin \mathbb{N})$ "
3) $R'' \forall x \in \mathbb{R}/2x \ge 0$ " 4) $M'' \exists x \in \mathbb{R}/2x - 1 = 3$ "

3)
$$R " \forall x \in \mathbb{R} / 2x \ge 0"$$

4)
$$M "\exists x \in \mathbb{R} / 2x - 1 = 3"$$

5)
$$N \forall n \in \mathbb{N} / \frac{n}{2} \in \mathbb{N}$$

Exercice4 : Donner la valeur de vérité des propositions suivantes

1)
$$R'' \forall x \in \mathbb{R}/x^2 \succ 0''$$

2)
$$B " \forall n \in \mathbb{N} / 2^n \succ 5(n+1)"$$

3)
$$c "\exists n \in \mathbb{N} / 2x - 5 = 0"$$

Exercice5 : Donner la négation des propositions suivantes

1)
$$A \forall x \in \mathbb{R}/x^2 > 0$$

1)
$$A " \forall x \in \mathbb{R} / x^2 \succ 0"$$
 2) $B " \forall n \in \mathbb{N} / 2^n \succ 5(n+1)"$
3) $C " \exists n \in \mathbb{N} / 2x - 5 = 0"$ 4) $D " \exists n \in \mathbb{N} / \sqrt{n} \in \mathbb{N}"$
5) $\exists x \in \mathbb{R} : x^2 = -1$ 6) $\forall x \in \mathbb{R} : \sqrt{x^2} = x$

3)
$$C "\exists n \in \mathbb{N}/2x - 5 = 0$$

4)
$$D " \exists n \in \mathbb{N} / \sqrt{n} \in \mathbb{N}"$$

5)
$$\exists \mathbf{r} \in \mathbb{R} : \mathbf{r}^2 = -1$$

6)
$$\forall x \in \mathbb{R} : \sqrt{x^2} = x$$

Exercice6: $x \in \mathbb{R}$:

Montrer que : $0 \le x \le 2 \Rightarrow 14 \le 3x + 11 \le 17$

Exercice7: $x \in \mathbb{R}$;

Montrer que :
$$0 \le x \le 4 \Rightarrow 2 \le 3\sqrt{x} - 1 \le 5$$

Exercice8: Montrer que La proposition $P: (\forall x \in \mathbb{R}): x^2 \geq x$ est fausse :

Exercice9: Montrer que La proposition $P:(\forall x \in \mathbb{R}): 2x \geq x$ est fausse :

Exercice 10: Montrer que : $\forall x > 0$ $x + \frac{1}{x} \ge 2$

Exercice11: Montrer que : $(\forall x \in \mathbb{R}): \frac{x^2-2}{x^2+2} \neq 1$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien